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NATIONAL ADVISORY CdhfITTEE FOR AERONAUTICS 

TECHTJICAL MEMORANDUM 1366 

HEAT TRANSFER BY FREE CONVECTION FROM HORIZONTAL 

CYLINDERS IN DIATOMIC GASES" 

By R. Hermann 

I. DETERMINATION OF HEAT-TRANSFER LAW FOR HORIZONTAL CYLINDER FROM 

TESTS WITH PARTICULAR ACCOUNT TAKEN OF THE 

TEEERATURE CHARACTERISTIC T e l  

1. Introductory Remarks 

The case of t he  horizontal  cylinder is  of pa r t i cu la r  importance i n  
the  study of  heat t r ans fe r  by f r e e  convection f o r  t he  following reasons: 
i n  the  f i rs t  place, next t o  the  rectangular p l a t e  it represents t h e  
simplest two-dimensional case; and second, a very wide range of measure- 
ments i s  possible,  from the  f i n e s t  e l ec t r i ca l ly  heated glow lamp wires 
t o  pipes heated by l iqu ids  or gases flowing through them. 

To inves t iga te  free-convection flow from t h e  point of view of 
similarity c~nsiderzt , iccs,  it is cnlzvenient. t.n consider t he  case of 
s m a l l  temperature differences between t h e  heated body and t h e  surround- 
ings; i n  t h i s  case a l l  t he  propert ies  of t he  medium, even the  densi ty  
( re f .  1, p .  429), i n  t he  e n t i r e  temperature f i e l d  may be assumed 
constant. The case of large temperatuse differences,  f o r  which t h e  
var ia t ion  i n  propert ies  over t he  temperature range can no longer be 

"Warmeubergang be i  f r e i e r  Stromung am wagrechten Zylinder i n  
zweiatomigen Gasen." VDI Forschungsheft, No. 379, 1936, pp. 1-24. 

with t h e  approval of Prof. Dr.-Ing. C. Wieselsberger and Prof. D r .  
W. Muller. The tests were ca r r i ed  out i n  t h e  divis ion f o r  
mechanics and thermodynamics of t h e  Physical I n s t i t u t e  a t  
of Leipzig. The author takes t h i s  occasion to  thank Prof. 
Sch i l l e r  f o r  t h e  i n t e r e s t  which he took i n  t h i s  
b l e  advice. 

'Accepted as d i s se r t a t ion  by the Technical High School a t  Aachen 
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neglected, is  t r e a t e d  separately.  A s  f i r s t  pointed out by W .  Nusselt 
(ref. 2) ,  it follows from the  d i f f e r e n t i a l  equations of f r e e  convection, 
together with t h e  uniquely determining boundary values (ref. 1, p. 428) 
f o r  the  case of small temperature differences,  t h a t  t h e  nondimensional 
heat-transfer parameter Nu (Nusselt number2) i s  determined by the  lift 
coeff ic ient  G r  (Grashof number) and the  cha rac t e r i s t i c  Pr (Prandtl  
number) f o r  t h e  molecular cons t i tu t ion  of t he  gas3: 

Nu = F(Gr, Pr)  

where 

NU = d / X ,  G r  = d3 g p @ / v 2  Pr = v / a  (2)  

a 
der  diameter (cm), g 
heat conductivity (cal/(cm) (sec) ( O C ) ) ,  v 
(cm2/sec), a 
f i c i e n t  of' expansion (OC-'), and 0 i s  the  temperature difference (OC) 
between body (t,) and medium (t,). 

i s  the heat- t ransfer  coef f ic ien t  (cal/cm2)(sec) (OC), d is  the  cylin- 
is  the  

i s  t h e  coef- 

i s  accelerat ion of gravi ty  (cm/sec2), X 
i s  the  kinematic v i scos i ty  

i s  t h e  temperature conductivity (cm2/sec), p 

The case of la rge  temperature difference between the  body and t h e  
surroundings, f o r  which t h e  gas propert ies  vary over t he  f i e l d ,  w a s  
s imilar ly  first considered by W. Nusselt (ref. 2 ) .  The following ex- 
pression i s  obtained f o r  t he  heat t r ans fe r  under t h e  r e s t r i c t i n g  con- 
d i t i o n  t h a t  t h e  temperature dependence on v and a may be repre- 
sented by exponential l a w s  i n  t he  absolute temperature, t h e  exponents 
of which f o r  gases of t he  same substance must be equal4; 

Nu = F(Gr, F'r, re) (3) 

The form here chosen f o r  t he  temperature charac te r i s t ic5  

21n t h e  notation of t he  cha rac t e r i s t i c  numbers, t h e  proposals of 
t h e  Heat Conference a t  Koln i n  1931 a re  followed. 
Bd. 2, p.  380, 1931. 

See Forschg. 1ng.-Wes., 

3See eq. (5). 

4This i s  approximately the  case, f o r  example, f o r  air ,  oxygen, and 
hydrogen; see reference 1, p. 433. 

5The abbreviation Te i s  chosen t o  conform t o  t h e  other  abbrevia- 
t i o n s  f o r  t he  charac te r i s t ic  numbers and t o  remind t h e  reader t h a t  it 
refers t o  a temperature re la t ion .  
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Te = @/T, (4 1 
(Tw, T-,(%) = absolute temperatures of t he  body and t h e  surroundings, 
respect ively)  d i f f e r s  inessent ia l ly  from t h e  nondimensional r a t i o  
Tw/T.. chosen by Nusselt, namely by the constant -1. Equality of Gr, 
Pr,  and Te i n  two d i f fe ren t  cases means complete s imi la r i ty ,  t h a t  is, 
similarity of t he  velocity f i e l d ,  t he  temperature f ie ld ,  and t h e  f i e l d  
of a l l  t h e  coef f ic ien ts  charac te r i s t ic  of t h e  substance (ref. 1, p. 434), 
and therefore  a l so  equal i ty  of t h e  Nu number. The p o s s i b i l i t y  s t i l l  
remains, however, t h a t  s imi l a r i t y  may ex is t  a t  t h e  same t i m e  t h a t  t he  
previously mentioned condition of t he  power l a w  i s  not s a t i s f i e d .  

I n  t h e  present report  t h e  charac te r i s t ics  represented i n  equa- 
t i o n  (3)  w i l l  be computed f o r  t h e  heat t r ans fe r  from heated w i r e s  and 
pipes i n  air, hydrogen, and oxygen; and from these values the  most 
probable form of the  heat-transfer l a w ,  obtainable a t  present, w i l l  be 
determined f o r  t h e  case of t he  horizontal cylinder i n  diatomic gases 
(Pr = 0.74).5a The dependence of Nu on the  temperature character is-  
t i c  Te, which follows from the s imi la r i ty  theory and is  i l l u s t r a t e d  by 
an example ( ref .  1, f i g .  1) as a t h i r d  independent variable,  w i l l  be ver- 
i f i e d  f o r  several  tests i n  the  range of G r  from t o  10. For the  
smallest  values of Gr, the  e f f e c t  of Te considerably outweighs t h a t  
of Gr. I n  the  region of large G r  from lo4 t o  lo7, on t h e  contrary, 
Te  i s  p rac t i ca l ly  without e f f ec t .  
i n  t h e  nondimensional representation of t h e  t e s t  r e s u l t s  of Nusselt 
(ref. 2 )  and Davis  (ref. 3) (&32 percent i n  t h e  case of Nusselt) i s  due 
t o  t h e  f a c t  t h a t  t h e  parameter Te 
ance with equation (1). The dependence of Nu on Gr, Pr, and Te  
w i l l  be theo re t i ca l ly  c l a r i f i e d  hereinafter.  The e f f e c t  of Te f o r  
small Gr may a lso  be cor rec t ly  estimated quant i ta t ively.  

The large s c a t t e r  of t h e  t es t  points  

is  not taken in to  account i n  accord- 

From t h e  tests conducted by various invest igators  f o r  d i f f e ren t  
f i n i t e  Te  values, t he  l imit ing law of s m a l l  temperature difference i s  
determined i n  each case by extrapolation t o  Te = 0. 
primary theo re t i ca l  and p rac t i ca l  significance s ince it is  iden t i ca l  
with t h e  theo re t i ca l ly  simpler case (1) and i s  thus free from the  pre- 
viously mentioned r e s t r i c t i v e  assumption with regard t o  t h e  temperature 
dependence of t h e  constants defining the propert ies  of t h e  substance. 

This i s  of 

5aFor t h e  values of X and v required f o r  computing the  char- 
t, ( i n  agreement a c t e r i s t i c s ,  values are assumed f o r  the temperature 

with E. Schmidt). The s imi l a r i t y  consideration leaves the  choice of 
t h e  reference temperature f ree .  
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From the  measured over -a l l  heat losses  d i r e c t l y  determined i n  t h e  
t e s t s ,  the amount due t o  rad ia t ion  must be subtracted.  
pose, a well known equation (ref. 4, eq. 38, p. 232) was employed; the 
bes t  mean values at present known were subs t i tu ted  as rad ia t ion  con- 
s t a n t s  for  t he  metal cylinder surfaces, as follows: 
s i l v e r ,  and tantalum, the values given by H. Schmidt ( re f .  5) j and f o r  
copper and iron, t he  values given by Gr'dber ( r e f .  6, p. 196). 
deviations as compared with the  values used by the  inves t iga tors  them- 
selves  are without s ignif icance i n  the  range of small values of 
because the rad ia t ion  component i n  the  case of t h i n  w i r e s  amounts t o  
only a few percent of t he  heat of convection. For the  t e s t s  of Wamsler 
and of Koch on th i ck  pipes, however, f o r  which the  rad ia t ion  lo s ses  a r e  
up t o  60 percent, an accurate knowledge of t he  rad ia t ion  coef f ic ien ts  
is  required. These coef f ic ien ts  were obtained by Wamsler ( re f .  13) 
through his own rad ia t ion  tests. 
reference 13, t h e  values obtained herein f o r  t he  rad ia t ion  heat are 
0.2 t o  2 percent la rger .  

For t h i s  pur- 

f o r  platinum, nickel,  

Small 

G r  

After correction6 of computations of 

3. Property-Determining Constants of Gases 

In  order t o  compute Nu, G r ,  and Pr,  values of t he  following 
properties a r e  required: densi ty  p, dynamic v iscos i ty  p, heat con- 
duct ivi ty  1, and spec i f ic  heat c f o r  a i r ,  hydrogen, and oxygen. 

a )  Constants f o r  a i r .  - The densi ty  was computed throughout t he  
tempe!ature and pressure range according t o  the  i d e a l  gas l a w 7 .  

The t r u e  spec i f i c  heat f o r  constant pressure was obtained from an 
equation given by Holborn and Jakob8 f o r  the  mean spec i f ic  heat .  

The temperature dependence of the  dynamic v iscos i ty  was determined 
by graphical adjustment of the  values given by Erkg. These values 

%amsler ( r e f .  13) computes incor rec t ly  with the  previously men- 
t ioned radiat ion equation without the  f a c t o r  of t he  area r a t i o  i n  the  
denominator. 

7Landolt-Bornstein: 5 th  ed., vol. I, p. 43. 

8Landolt-Bornstein: 5th ed., vol .  11, p. 1274. 

gLandolt-Bornstein: 5 th  ed., vol. I, pp. 177-181, Eg. I, pp. 143- 
144, Eg. IIa, pp. 138-141. 
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d i f f e r  only s l i g h t l y  (at most, 4 percent) from t h e  graphical mean 
values given by Erk from 0' t o  700' CIO. 

The heat conductivity a t  high temperatures w a s  obtained by a gas 
k ine t i c  extrapolation, s ince t h e  t e s t  values col lected by Jakobll  l i e  
only between Oo and 212' C. 
r e f .  6, p. 192), which deviates f romthe  avai lable  t es t  values by at 
most 2.8 percent, i s  employed herein. 

The Nusselt formula (ref. 1, p. 491; 

From t h e  gas k ine t i c  re la t ion12 

Pr = p c/X = (n + 2)/(n + 4.5) (5 1 
where n i s  the  number of degrees of freedom of t h e  molecular motion 
according t o  which the  Pr number of a gas i s  independent of t h e  t e m -  
perature  (and moreover is  t h e  same f o r  a l l  gases with t h e  same number 
of atoms); t he re  i s  obtained f o r  a i r  a s m a l l  decrease of 
f o r  Oo C t o  0.721 a t  200' C and 0.679 a t  1000° C (value obtained from 
formula f o r  n = 5 i s  Pr = 0.737), which, however, i s  of no s i g n i f i -  
cance because it l i e s  within t h e  uncertainty l i m i t s  of t h e  p and X 
values. The same holds f o r  t h e  differences i n  t h e  P r  numbers among 
air, hydrogen, and oxygen. 

Pr = 0.739 

(b) Constants f o r  hydrogen and oxygen. - For t h e  kinematic v i s -  
cos i ty  and heat conductivity t h e  values given by Davis  (ref. 3) are 
employed, which a l so  f o r  a i r  are i n  good agreement (deviation, at  most 
2.7 percent) with t h e  chosen values. A knowledge of t h e  spec i f ic  heat  
i s  unnecessary i f  t h e  Pr 
are 0.717 f o r  hydrogen and 0.731 f o r  oxygen13. 

( c )  Gas constants f o r  high pressures. - From t h e  tests of Petavel, 
which extend up t o  160 atmo-spheres, only those up t o ' 4 0  atmospheres 
were computed i n  order t h a t  reliable gas constants would be available. 
I n  t h i s  pressure range and up t o  1000° C, t h e  computation w a s  conducted 

value f o r  Oo C is  sat isfactory;  t he  values 

%ien-Harms: Handb. d. Exp. Phys., IV, 4, p.  531. 

llLandolt-Bornstein: 5 t h  ed., vol. 11, p.  1304. 

"A. Busemann i n  Wien-Harms: Handb. d. E-. Phys., N, 1, p. 359. 
This r e l a t i o n  may be obtained from an equation given by Eucken (Physik 
Z., vol. 14 (1913), p. 324. 

I 
I3A. Busemann i n  Wien-Harms: Handb. d. Exp. Phys., N, 1, p. 362. 
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with the  normal values since the  dependence on t h e  pressure of 
p and the deviations of p from t h e  ideal gas l a w  a re  e i t h e r  not known 
a t  a l l  or are only p a r t l y  known, and the  known deviations amount t o  only 
a f e w  percentl4. 

k and 

4. Individual  investigation^^^ 

(a) General. - The nondimensional representat ion of t h e  r e s u l t s  i s  
e f fec ted  according t o  equation (3)  by logarithmic graphs with Nu 
a f’unction of G r  and with Te as t h e  only parameter, since P r  
(according t o  sec. 3a) may be considered as constant. 
s l i g h t  variation of  Pr  there  indicated i s  considered as real, t he re  
would, according t o  a tes t  result of Davis  ( r e f .  3) on t h e  e f f ec t  of 
t h e  number, be obtained only displacements of the  curves of t h e  
order of magnitude of 1/100 of those which can ac tua l ly  be observed. 

as 

Even i f  t h e  

Pr 

I n  tab le  I are summarized t h e  tes t  objects  and tes t  conditions of 
t h e  individual invest igators  and t h e  range of Te used. I n  order t o  
judge t o  what extent t h e  condition of i n f i n i t e  extension of t he  f l u i d  
w a s  satisfied, t h e  r a t i o  of t h e  height H of t h e  surrounding space t o  
t h e  cylinder diameter d i s  shown. I n  f igu res  1 t o  7, qproximately 
equal Te values a r e  indicated by t h e  same symbols. The decrease i n  
Nu with increasing Te i s  pa r t i cu la r ly  evident i n  t h e  individual  
point  groups (because of t he  same w i r e ) ,  whereas t h e  values f o r  d i f f e ren t  
w i r e s  natural ly  show l a rge r  sca t te r ing  as compared with one another. 
The curves 
cess and, s imilar ly ,  t h e  extrapolation points  and curves f o r  Te = 0 
and t h e  dependence of Nu on Te ( re la t ive decrease i n  Nu f o r  
ATe = I). 
vidual w i r e s  (point groups); t h e  indicated meap values, f o r  t h e  individ-  
ual  invest igators .  

Te = constant were obtained by a graphical adjustment pro- 

The indicated minimum and m a x i m u m  values hold f o r  the  indi-  

1 1 .  - The authors 
of reference 1 give i n  the  form of diagrams f o r  each w i r e  t h e  t o t a l  heat-  
t r ans fe r  coeff ic ient  as a function of t h e  wire temperature; two w i r e s  
(0.0206 and 0.0282 cm diam.) because of  t h e  very la rge  sca t te r ing  and a 
t h i r d  wire (0.0102 cm diam.) because of i t s  strong deviation i n  pos i t ion  
and incl inat ion were excluded from the  evaluation of t h e  tests.  The 

14Landolt-BGrnstein: 5 th  ed., Eg. I, p. 64 f f ,  Eg. IIa, p. 144. 

15Acknowledgement i s  made t o  D r .  K. Winkler, Leipzig, f o r  h i s  
assistance with the  computations. 

N 
d 
M 
M 
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log  G r  
Decrease, percent 

' W  w 
3 

0.1-4 0.8-4 0.6-3 0.5-2 0.4-1 
7.2 7.5 5.4 3.2 2.2 

points  computed from t h e  low temperatures of 40° t o  80° C were simi- 
l a r l y  not used on account of  t h e  large scat ter ing.  

Langmuir ( re f .  9 )  a l s o  discusses h i s  own tests a t  various a i r  
pressures (10 t o  760 mm Hg) and variable room temperature (L = -190' C 
t o  600° C )  which on account of t h e  strong change i n  t h e  expansion coef- 
f i c i e n t  (p = l/T-) would be of  g rea t  i n t e re s t  and the  only tes ts  of 
t h e i r  kind. Unfortunately, these t e s t s  have not as yet  been published, 
and t h e  t e s t  data  are not avai lable  i n  a form i n  which they may be 
e valuate d16. 

(d) Results of B i j l eve l t  ( r e f .  l o ) ,  f igure  3. - Since t h e  tes ts  of  
B i j l eve l t  were primarily f o r  t h e  purpose of invest igat ing forced con- 
vection, t h e  experimental setup w a s  designed f o r  t h e  s e n s i t i v i t y  re- 
quirements of t h i s  flow. This explains t h e  greater  s c a t t e r  of t h e  t es t  
points  of reference 10 as compared with those of other  invest igators .  
For each individual  w i r e  (with t h e  exception of t h e  Ta and N i  w i r e ) ,  
a grouping i s  nevertheless observed with respect t o  i n  t h e  usual  
sense. 

Te 

j e )  Results of Kennelly, Wright, and Bi j leve l t  ( r e f .  ll), f i g -  
ure  4. - The invest igat ion of reference 11 is  noteworthy i n  t h a t  through - - 
t h e  pressure ( p , v )  changes, even f o r  constant w i r e  diameter and constant 
surrounding temperature, a change is effected i n  the Gr number so t h a t  

I6For these da ta  the  author i s  indebted t o  a personal communication 
from Dr. I. Langmuir. 
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curves o f  Te  = constant a r e  here obtained from t e s t s  on a s i n  l e  
w i r e .  The nondimensional representat ion of  these tests ( f ig .  47 has 
been given previously (ref.  1). 
g r a m  with the  heating current  as a function of t he  pressure f o r  th ree  
or  four d i f f e ren t  temperature differences,  as parameter of which the  
values for  f i v e  d i f fe ren t  pressures w e r e  computed i n  terms of the  
charac te r i s t ics  and were connected by the  curves Te = constant. 
extrapolation t o  Te = 0 
The values of  t h e  wire of  medium diameter (d = 0.02616 em) were not 
p lo t ted  because of the  i r r e g u l a r i t i e s  obtained. 

The authors give f o r  each wire a dia- 

The 
shows extremely good agreement f o r  both wires. 

cu * 
M 
M 

(f) Results of  Petavel (ref. E), f igure  5. - From t h e  o v e r - a l l  
heat-transfer coef f ic ien ts  given f o r  constant pressure as  a function 
of t h e  temperature difference, values were computed f o r  200°, 400°, 
600°, 800°, and 1000° C temperature differences up t o  pressures of 
40 atmospheres. For the  sake of c l a r i t y ,  however, only t h e  curves f o r  
t he  extreme Te  values are p lo t t ed  i n  f igure  5. Since the  heat con- 
duct ivi ty  and density of hydrogen d i f f e r  f rom the  values of a i r  by the  
fac tors  6 and 14, respectively,  these tests would have been par t icu-  
l a r l y  sui table  f o r  checking t h e  s imi l a r i t y  l a w .  Unfortunately, however, 
these t e s t s  are evidently unrel iable  because of t he  far too small 
jacket pipe (H/d = 18.6 as the  smallest value of a l l  inves t iga tors ) .  
The s imi la r i ty  l a w  f o r  the  three gases i s  confirmed only f o r  Te = 0.69 
and G r  > 102. I n  the  case of a i r  and oxygen, there  i s  a s p l i t t i n g  
with respect t o  t h e  dependence on Te, but i n  t h e  reverse sense from 
t h a t  observed f o r  all wires of t h e  o ther ' inves t iga tors .  I n  the  case 
of hydrogen, a dependence on Te i n  t h e  correct  sense is observable 
only a t  t h e  smallest values of G r .  Finally,  t h e  Nu values a l so  f o r  
s m a l l  G r  l i e  too high as compared with t h e  values of a l l  other in -  
vestigators and t h e  r ise i n  t h e  Nu with increasing Gr has too grea t  
a lag. 
heat-transfer l a w  were not used. 

For these reasons, t h e  resul ts  o f  Petavel f o r  determining t h e  

(g) Results of Wamsler ( r e f .  13), f igu re  6. - Wamsler's curve, 
which was obtained on t h e  bas i s  of cor rec t ly  computed rad ia t ion  l o s s  
(sec. 2) ,  shows a dependence on Te  such t h a t  t h e  mean values f o r  
Te  = 0.60 l i e  about 5 percent higher than those f o r  Te = 0.20. This 
small s p l i t t i n g  of the  e f f ec t  of Te which occurs i n  the  opposite 
sense t o  t h a t  i n  the  case of s m a l l  G r ,  however, i n  a l l  probabi l i ty  
does not contradict  the  f a c t s  but may be explained by the  consideration 
t h a t  t h e  rad ia t ion  coef f ic ien ts  i n  t h e  e n t i r e  temperature range from 
50' t o  270' C were assumed constant, whereas i n  general  f o r  metals there  
has been establ ished an increase of  t h e  rad ia t ion  coef f ic ien t  with the  
temperature. If i n  t he  previously mentioned temperature range a r ise 
i n  the  radiat ion coef f ic ien ts  of about 5 percent is  assumed, as follows 
f o r  cast i ron  from Wamsler's determination of t h e  rad ia t ion  coef f ic ien t  
and fo r  wrought i ron from the  determination of Nusselt (ref. 14), t he  
observed s p l i t t i n g  of t he  e f f ec t  of i s  neutral ized and t h e  curve 
shown, va l id  f o r  a l l  Te values, i s  obtained. The t e s t  values o f  t he  

Te  
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copper pipe and of a wrought i ron  pipe (of 5.9-cm diam.) w e r e  not em- 
ployed i n  f igure  6 because of t h e  obvious i r r e g u l a r i t i e s  indicated by 
the  scat ter ing.  

(h) Results of Koch (ref. 15), figure 7. - The nondimensional 
cha rac t e r i s t i c s  were redetermined herein with t h e  values X and v 
f o r  w a l l  temperature, s ince the  charac te r i s t ics  given by Koch were com- 
puted for a mean temperature of t h e  substances. The tes t  r e s u l t s  show 
an unusually s m a l l  sca t te r ing  which i s  t o  be ascribed a carefu l  account- 
ing f o r  various f ac to r s  (e.g., determination of t h e  temperature of t he  
air  i n  t h e  room and at  t h e  w a l l s ,  and also the  end e f f ec t  of  t h e  pipes).  
For t h e  two intermediate pipes, a f t e r  graphical adjustment, a decrease 
of Nu f o r  Te = 0.07 t o  0.52 by about 2.5 percent i s  observed, where- 
as i n  t h e  case of t h e  smallest pipe no ordering i s  observed and i n  the  
case of  t h e  la rges t  pipe there  is  a p a r t i a l  decrease and a p a r t i a l  
sca t te r ing .  I n  agreement with t h e  r e su l t s  of Wamsler, t h e  dependence 
on Te i s  thus p rac t i ca l ly  zero a l so  f o r  large G r  (lo4 t o  lo7). 

5. Summary of T e s t  Results 

The r e s u l t s  of t h e  d i f f e ren t  invest igators  as regards t h e i r  agree- 
ment may be compared i n  two groups. 
(lo-* t o  lo), t h e  tests of Ayrton and Kilgour, Langmuir, Bi j leve l t ,  and 
Kennelly and coworkers are i n  agreement. From these invest igat ions are 
determined, on t h e  one hand, t he  curves Te = 0 f o r  t h e  l imi t ing  l a w  
of small temperature difference ( f ig .  8) and, on t h e  other  hand, t h e  
curves Te = 0.65 
For Te  = 0 t h e  maximum s c a t t e r  of t he  r e s u l t s  of t he  four- invest igators  
i s  10.5 percent, t he  minimum 5 percent, t he  corresponding values f o r  
Te = 0.65 being 22 and 8.5 percent, respectively. The middle curves 
of figures 8 and 9 obtained f o r  Te = 0 and Te = 0.65 give f o r  t h i s  
change i n  Te an average change i n  Nu of 14.7 percent ( f ig .  10). 
A re la t ive decrease i n  t h e  Nu number by 22 percent with increase of 
Te 
e f f ec t  of Te f o r  s m a l l  G r .  

I n  the  region of small G r  

corresponding t o  an intermediate t es t  range ( f ig .  9 ) .  

from 0 t o  1 i s  thus obtained as t h e  experimental mean value of t he  

I n  t h e  region of la rge  G r  (lo4 t o  lo7), t he  t es t  values of 
Wamsler and Koch from energy measurements and the  values obtained from 
t h e  temperature f i e l d  measurements of Jodlbauer [ref. 16)  by in tegra t -  
ing over t h e  cylinder perimeter are shown i n  figure 10. A s  follows 
from t h e  discussion of t h e  r e s u l t s  of Wamsler and Koch, t h e  values of 
Koch must be considered as more re l iab le .  There i s  nevertheless an 
uncertainty i n  t h e  values due t o  t h e  uncertainty i n  the  radiat ion com- 
ponents which l i e  between 40 and 60 percent. 
temperature f i e l d  measurements of Jodlbauer are free from t h i s  source 
of e r ror .  

On t h e  other hand, t he  

Since, moreover, t h e  r e s u l t s  of reference 16 are i n  good 
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. agreement (mean deviation, 4 percent) with the  theo re t i ca l  solut ion 
given i n  Par t  I1 they were assigned a grea te r  weight i n  the  evaluation. 
Jodlbauer himself, however, considers h i s  energy measurements, which 
a re  about 10 percent higher and l i e  near the  values of Koch, t o  be 
correct and h i s  f i e l d  measurements i n  e r ro r  because of t he  introduction 
of  t he  thermocouple. The tes t  points of Wamsler are, on the  average, 
18 percent higher than t h e  theo re t i ca l  values, and those of Koch, 
11 percent higher. The interpolat ion curve i s  not everywhere satis- 

h3 + 
M 
M 

factory as regards i t s  slope and curvature and could be determined only 
with a p a r t i a l  deviation from t h e  t e s t  values. 

The differences s t i l l  existing, after extensive adjustment, among 
t h e  individual invest igators  and t h e  d i f f i c u l t y  of interpolat ion show 
t h a t  the heat- t ransfer  curve i s  s t i l l  not conclusively determined with 
the  desirable accuracy of several percent, but tha t ,  on t h e  contrary, 
fur ther  tests are required. The given in te rpola t ion  curve nevertheless 
represents t h e  most probable curve of t h e  heat- t ransfer  l a w ,  obtainable 
a t  t h e  present time, f o r  diatomic gases with account taken of t h e  de- 
pendence on Te i n  t he  range of G r  from t o  lo7. The numerical 
values of  t h i s  curve are given i n  table 11. 

6. Qualitative Theoretical  In te rpre ta t ion  of Heat-Transfer Law 

I a )  Streamlines. - It i s  necessary t o  explain theo re t i ca l ly  the  
dependence of t h e  Nu number on G r  and Te, determined experimentally 
i n  sections 4 and 5 ( f ig .  lo), and a l so  t h e  dependence on Pr as ob- 
t a i n e d b y  A. H. Davis  (ref. 3) f o r  l iqu ids .  
e n t i a l  equations under t h e  assumption of a t h i n  (as compared with t h e  
cylinder diam.) heated laminar layer  i s  given i n  Pa r t  I1 f o r  diatomic 
gases (Pr = 0.74) and s m a l l  temperature differences (i . e. , approximately 
constant properties,  T e =  0)  and is val id  f o r  mean values of G r  of 
about lo4 t o  3X1O8. 
t h e  a id  of su i t ab le  assumptions, the dependence of Nu on s m a l l  and 
la rge  G r  and a l s o  on Pr  and Te w i l l  be discussed theo re t i ca l ly  
without any necessary implications of f i n a l i t y  i n  t h e  conclusions. 

A so lu t ion  of t h e  differ- 

On t h e  basis of these t h e o r e t i c a l  results and with 

The streamline p lo t  ( f ig .  11) obtained from t h e  solut ion and the  
isotherms of f igure  1 2  show t h a t  cold air  streams from t h e  bottom and 
s ides  o f  t h e  cylinder with increasing veloci ty  i n  laminar flow upwards 
along its surface, i s  deflected away from t h e  surface i n  the  region of 
t he  upper stagnation point,  and forms a r i s i n g  current  of w a r m  a i r .  
With increasing G r  of t he  cylinder, t h e  thickness of t h e  streaming 
layer  r e l a t i v e  t o  the  cylinder diameter decreases. 
increase at a higher rate, however, t h e  Reynolds number R e  of t h e  
boundary layer  increases so  t h a t  t he  boundary layer  f i n a l l y  becomes 
turbulent.  According t o  the  schl ieren photographs of f igure  23, t h i s  
occurs i n  the  neighborhood of t h e  upper stagnation point at  

Since t h e  ve loc i t ies  

8 G r  = 3 . 5 ~ 1 0  . 
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With f'urther increasing G r ,  t h e  point o f  turbulence t r a n s i t i o n  t r a v e l s  
upstream (f ig .  26) and reaches t h e  equatorial  region a t  G r  = 3x1O9. 
With decreasing G r  of t he  cylinder, the R e  of t h e  boundary layer  
likewise decreases, and a t  t h e  same time t h e  thickness of t h e  layer  i n  
r e l a t ion  t o  t h e  cylinder diameter increases so t h a t  t h e  given solut ion 
of t h e  d i f f e r e n t i a l  equations f i n a l l y  (below G r  = 104) becomes in-  
valid. A t  very s m a l l  G r  (very small R e ) ,  t h e  isothermal p ic ture  of 
the  free flow i n  t h e  neighborhood of  the body becomes increasingly 
similar t o  t h e  concentric isothermal picture of t h e  pure heat con- 
duction17 so  t h a t  almost s t a t i c  heat-conduction r e l a t ions  may here be 
supposed. An estimate of t h e  Te e f fec t  made under t h i s  assumption 
a t  s m a l l  G r  
following sect ion b ) .  
the less  t o  be observed. 
heat t ransfer ,  t h e  solut ion of t h e  heat-conduction equation has as t h e  
po ten t i a l  function a t  i n f i n i t y  a singular point (negatively i n f i n i t e  
temperature). That is, even at a very large distance from t h e  cylinder 
the  room temperature continues t o  decrease, whereas ac tua l ly  i n  t h e  
case of f r e e  flow t h e  room temperature a t  large distance from the  body 
very soon becomes constant. 

likewise gives good agreement with t h e  measurements (see 
The following fundamental difference is never- 
For i n i t i a l l y  given cylinder temperature and 

(b) Heat t ransfer .  - Dependence on G r .  For t h e  dependence of Nu 
G r ,  t h e  so lu t ion  of t h e  d i f f e ren t i a l  equations under the  familiar on 

assumptions of t h e  Prandtl  boundary-layer theory gives 

N u  I Grl/* 

as i s  a l s o  approximately shown by the  t e s t s  of Wamsler and Koch ( f ig .  10).  
A t  very large G r  with a t  least p a r t i a l  turbulent  flow, t h e  heat t rans-  
fe r  must rise more strongly on account of  t h P  increased mixing. With 
increasing turbulent  mixing the  dependence of t h e  heat- t ransfer  coef- 
f i c i e n t  on t h e  pos i t ion  must a l s o  decrease. The assumption t h a t  CL i s  
independent of t h e  posi t ion (or on t h e  'cylinder diam.), as i s  obtained 
from t h e  t e s t s  of Gr i f f i ths  and Dav i s  (ref. 1 7 )  f o r  a v e r t i c a l  p la te ,  
gives on the  basis of dimensional considerations 

Nu I Gr1/3 

Above G r  = 3.5X108, t he  proportionali ty of t h e  Nu number t o  t h e  
four th  root  of G r  
of t r a n s i t i o n  t o  turbulence must gradually become a proport ional i ty  t o  
the  cube root.  

corresponding t o  t h e  upstream t r ave l  of t he  point 

Experiments of W. King (ref. 18) on ve r t i ca l  cylinders, 

17See photographs by R. B. Kennard; Bur. Stand. J. R e s . ,  vol. 8 
(1932), p. 787. Report on t h i s  by M. Jakob: Forschg. 1ng.-Wes., vol. 4 
(1933), p. 45. 
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- 
pla tes ,  and blocks a t  
already pointed out by M. Jakob and W. Linke ( r e f .  19) .  
G r ,  fo r  which the  amount of heat t ransfer red  by convection i s  always 
below t h a t  t ransfer red  by conduction, t he  Nu number i n  accordance 
with i t s  def in i t ion  must gradually become constant, as may be seen from 

G r  up t o  10l2 confirm t h e  cube-root l a w  as 
For very s m a l l  

C 

I 
t h e  discussion o f  data below G r  = ( f ig .  10).  t 

Dependence on Pr. The dependence of Nu on Pr f o r  
G r  = constant and Te = constant may be understood by assuming a 
change i n  A with a l l  t h e  remaining magnitudes kept constant. The 
increase i n  Pr, through a decrease i n  A, gives i n  t h e  region of 
predominant heat conduction (very s m a l l  G r )  a proportional decrease 
i n  t h e  quantity of heat t ransferred,  t h a t  is, Nu = constant. I n  t h e  
region of large G r ,  a decrease i n  (on account of t he  smaller con- 
duction component as compared with t h e  convection component) gives a 
r e l a t ive ly  smaller decrease i n  a, t h a t  is, an increase i n  Nu. I n  
agreement, invest igat ions by Davis (refs. 3 and 20) on l iqu ids  of very 
different  l?r (Pr = 0.74 t o  7940) f o r  s m a l l  G r  give the  l imi t ing  
value of Nu which i s  independent of G r  and a l so  of Pr. For medium 
and large values of G r ,  an increase of Nu with Pr w a s  obtained. 

Dependence on Te. The dependence of Nu on Te f o r  
G r  = constant and Pr = constant f o r  diatomic gases i s  determinedby 
t h e  temperature dependence on h ,  v, a, and a l so  by t h e  temperature - 
chosen in  computing the  cha rac t e r i s t i c s  G r  and Nu (Pr is  independ- 
ent of the temperature) f o r  t h e  f l u i d  propert ies  A and v ( P  = 1/T, 
i s  constant i n  the  e n t i r e  f ie ld ,  r e f .  1); t he  w a l l  temperature tw o r  
Tw was chosen herein. 

An increase of T e  = (Tw/Tm)-l i s  considered t o  be due t o  a de- 
crease in  T, with Tw constant so  t h a t  t h e  values of  X and v 

employed f o r  t he  computation of Nu and G r  remain unchanged. The 
associated increase of P and 8 is compensated by a decrease i n  the  
gravi ty  f i e l d  g so  t h a t  gP6, t h a t  is, the  l i f t  accelerat ion and G r  
remain constant. Hence colder outer layers  with smaller A and v 
bu t  larger  p now take part i n  t h e  heat t r ans fe r .  I n  the  region of 
very small G r  with predominating heat conduction A, t he  magnitude 
a, and hence Nu, must therefore  decrease with increasing Te. This 
i s  a l so  shown by the  data discussed previously between and 
10 (see f i g .  10). For t h e  region of very la rge  G r  with smaller v i s -  
cos i ty  and heat-conduction e f f ec t  as compared with t h e  turbulent  momen- 
tum and heat mixing, it a l s o  follows18 from t h e  momentum equation, 

G r  = 10-4 

18Under the  reasonable assumption t h a t  with t h e  change of T e  t he  
prof i les  of t h e  velocity and temperature t o  a f i r s t  approximation under- 
go aff ine variations.  The 'standard veloci ty  W' may thus be taken f o r  
example as the maximum value of t he  tangent ia l  veloci ty  a t  the  equa- 
t o r i a l  region of the  cylinder.  
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because of t he  constancy of t he  lift acceleration, t h a t  t h e  standard 
veloci ty  W i s  constant. The par t ic ipat ion of colder layers  with in-  
creased value of p i n  the  heat t ransfer  here means an increase i n  the  
heat- t ransfer  coef f ic ien t  a, which i s  proportional t o  cpW, and there-  
f o r e  i n  Nu. 

The decrease of Nu with increasing Te f o r  very s m a l l  G r  
contrasts ,  therefore ,  with an increase f o r  very large Gr .  The e f f e c t  
of Te f o r  s m a l l  G r  values must therefore, i n  agreement with t h e  
t e s t  r e s u l t s  of Langmuir, f i r s t  decrease with increasing G r  values 
and f ina l ly ,  somewhere i n  the  range of medium G r ,  must p r a c t i c a l l y  
vanish, as is  evidently the  case according t o  t h e  experiments between 
G r  = lo4 and lo7 ( f ig .  10). 

For the  range of very small G r ,  the  order of magnitude of t h e  
dependence of Nu on Te under the  approximating assumption of purely 
s t a t i c  heat conduction may be estimated when a mean conductivity i s  
used, 

t he  following expression i s  obtained f o r  t h e  Nu numbers corresponding 
t o  two d i f f e ren t  Te values Tel and Te2 f o r  equal wall  temperature 

The value Tel = 0 
o r  Tw = Gj and Te2 = 1, t h a t  is, T /T, = 2. For the  temperature 

dependence of 
used19 

i s  chosen, t h a t  i s ,  vanishing temperature difference 

1 w2 2 
1, t he  previously (ref.  1) given exponential form is  

with n = 0.73820 

''A0 is  the  

TO' 
L -  

-- 20Determined 

value of 1 f o r  the a r b i t r a r i l y  chosen temperature 

.from t h e  previously given exponent f o r  a of 1.738 
* neglecting the  temperature dependence on c. 
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with To = T = T i n  equation (10) and by integrat ion:  
w 1  w2 

Since ‘h,(Tel) = X(T 

s t i t u t i o n  of t h e  numerical values: 

), t h e  following expression r e s u l t s  after sub- 
w1 

The decrease of Nu f o r  G r  = constant with increase from Te = 0 
t o  Te = 1 is thus theo re t i ca l ly  obtained as 19 percent. The pre- 
viously discussed tests of t h e  four  invest igators  between 
and 
value of 22 percent (see f i g .  5) .  
assumption of approximately s t a t i c  conducting conditions a t  small 

G r  = lo-* 

This good agreement j u s t i f i e s  t h e  
10 gave values between 13 percent and 26 percent with a mean 

G r .  

N * 
M 
M 

11. THEORETICAL SOLUTION OF THE BOUNDARY EQUATIONS FOR THE 

HORIZONTAL CYLINDER (CASE OF STEADY MOTION) 

1. Abstract 

The large number of experimental invest igat ions of heat t r ans fe r  
i n  f r ee  convection correspond t o  only a s ingle  physical ly  sa t i s f ac to ry  
theore t ica l  solut ion of t h e  d i f f e r e n t i a l  equations, namely t h e  so lu t ion  
f o r  t he  ve r t i ca l  p l a t e  (two-dimensional steady-flow case) f o r  moderate 
temperature differences,  which w a s  given by Schmidt and Beckmann 
(ref. 21) with the  help of Pohlhausen. 
approximation of t h e  Prandt l  boundary-layer theory ( laminar  f l o w  i n  a 
layer  which i s  t h i n  as compared with t h e  distance from t h e  lower edge; 
velocity normal t o  t he  w a l l  s m a l l  as  compared with t h a t  i n  t h e  d i rec t ion  
of t h e  pr incipal  flow along t h e  w a l l ) .  
regards the  velocity and temperature f ie lds  and therefore  the  heat 
t ransfer  agree very w e l l  with the  corresponding measurements. 

The solut ion i s  based on the  

The r e s u l t s  of t h e  theory as 
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For t h e  case of t h e  horizontal  cylinder, schl ieren photographs i n  
air  (see ref. 22 and f igs .  23  and 25) show tha t ,  f o r  Grashof character-  
i s t i c s  ( G r  = d3gP6/v2) of about lo4 and above, t he  heating of t he  a i r  
extends t o  only a r e l a t ive ly  t h i n  layer around t h e  cylinder, a f a c t  
which permits t h e  mathematical simplification of t h e  problem. On t h e  
assumption t h a t  t h e  heat- t ransfer  and the flow processes are r e s t r i c t e d  
t o  a t h i n  f i l m ,  as compared with t h e  cylinder diameter, with laminar 
flow (boundary-layer assumption) t h e  d i f f e ren t i a l  equations (ref. 23) 
f o r  moderate temperature differences can be solved approximately f o r  
t h e  veloci ty  and temperature f ie lds ;  and therefore  t h e  heat t r ans fe r  
can be computed which, i n  t h e  range of Gr 
t h e  i n i t i a l  assumptions are sa t i s f i ed ,  is i n  good agreement with 
experiment. 

lo4 t o  3>(L08, within which 

2. Se t t ing  up of Di f fe ren t ia l  Equations 

To start, t h e  hydrodynamic d i f f e ren t i a l  equations are used i n  a 
form previously given ( r e f .  1)21 which shows a " l i f t  term", charac- 
t e r i z i n g  the  free convection, t h a t  a r i ses  f rom t h e  combining of t he  
gravi ty  term and t h e  hydrostatic component of t h e  pressure drop, so 
t h a t  only t h e  gradient of t h e  dynamic pressure p* remains as t h e  
pressure force.  This dynamic pressure i s  equal t o  zero where there  
i s  no motion and no temperature difference with respect t o  the  medium 
at  a la rge  distance.  A s  w a s  indicated i n  d e t a i l  i n  reference 1 (p .  
429), t h e  densi ty  and other charac te r i s t ics  of t h e  substance i n  the  
e n t i r e  f i e l d  may be considered as constant (case of s m a l l  temperature 
difference)  and t h e  equations w i l l  continue t o  describe the  free- 
convection problem. The equations i n  vector form are then22 

wo grad w = - l / p  grad p)c - v r o t  r o t  w - gP6 

div w = 0 

wo grad 6 = a A 6 

with the  boundary conditions: w = 0, 8 = O  on t h e  cylinder surface; and 
w = 0, 0 = 0, p* = 0 at  in f in i ty .  (w, velocity; 6,  temperature d i f f e r -  
ence with respect t o  temperature a t  inf ini ty;  9, dynamic pressure; 
p, density; v, kinematic viscosity; fi, expansion coeff ic ient ;  a, temper- 
a tu re  conductivity; E, gravity acceleration vector; g, i t s  absolute 
value; r, cylinder radius.  ) 

0 "In equation (3c) i n  reference 1 a minus s ign mistakenly appears 
on the  r i g h t  side.  

221n place of Aw the  invariant form i s  wr i t ten  grad d i v  w - 
r o t  r o t  w. 
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For t r ea t ing  t h e  two-dimensional f low about t he  cylinder, these 

equations a re  conveniently wr i t ten  i n  a rc  length coordinates with t h e  
a rc  length 
with the  lower stagnation point as or ig in)  and the  normal distance n 
from the cylinder surface, and t h e  veloci ty  components u and v 
p a r a l l e l  and normal t o  t he  w a l l ,  respectively.  
without neglecting any terms23: 

s on t h e  cylinder perimeter (taken i n  clockwise d i rec t ion  

There i s  then obtained, 

S + gp0 s i n  - + u* v - -  1 ap* r r aU 3U 
r r u n U v + ' + - =  r + n  p Z r + n  

S r av a V  U2 1 ap* 
+ v an - - = - bn - gpe cos + u- r + n  as r + n  

1.6 6 - 1  1 

The approximations made according t o  t h e  boundary-layer theory a re  now 
introduced. The cylinder radius  r and hence a l s o  s (with t h e  ex- 
ception of  t h e  lower stagnation poin t )  and 
order of magnitude 1; n 

u are assumed t o  be of t h e  
i s  assumed t o  be of t h e  order of magnitude of  

2%he hydrodynamic equations agree, except f o r  t h e  dynamic pres-  
sure and l i f t  terms, with t h e  equations (lo), (ll), and (12) for 
r = constant of W .  Tollmien: i n  Wien-Harms, Handb. d. Exp. Phys., IV, 
1, p. 248. 

N 
d 
M 
M 
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t he  boundary-layer thickness C C c l ,  so t h a t  n + r may be r e -  
placed by r. The estimate of the  order of magnitude of t h e  individual  
terms according t o  t h e  method given by Prandtl  and h i s  coworkers then 
gives t h e  r e s u l t s  wr i t ten  underneath t h e  individual terms. 
t h a t  t he  f r i c t i o n  and i n e r t i a  forces  may be of equal e f f ec t ,  it i s  
necessary t h a t  v (and correspondingly a) be of the  order of magnitude 
of I n  order t h a t  t he  l i f t  forces f o r  t h e  motion i n  t h e  d i r ec t ion  
of t h e  main stream be of significance as compared with t h e  i n e r t i a  and 
f r i c t i o n  forces,  t h a t  is, i n  order that  ' f r e e  convection' e x i s t  a t  a l l ,  
it is  necessary t h a t  gpe - 1. From t h e  two momentum equations it 
then follows t h a t  t h e  pressure terms are a t  most - 1. Since pu is 
zero a t  t h e  outer  edge of t h e  boundary layer,  it follows from 

I n  order 

e 2 .  

by in tegra t ion  from t h e  
surface over t h e  length 
most be of the order of 

outer  edge of the boundary layer  t o  t h e  cylinder 

magnitude e, t ha t  is, so t h a t  l / p  ap*/as = E. 
E t h a t  $ /p  i n  the  boundary layer  can a t  

Since i n  what follows only t h e  terms of the  order 1 are retained, 
t h e  following r e su l t ,  important f o r  simplifying the  mathematical treat-  
ment, i s  obtained: 
be neglected as compared with t h e  tangent ia l  l i f t ,  i ne r t i a ,  and f r i c t i o n  
forces.  The term p* alone is contained i n  the  equation of t h e  normal 
momentum. Hence, u, v, and 8 are t o  be computed from the  equation of 
t he  tangent ia l  momentum, the  continuity equation, and t h e  heat- t ransfer  
equation (eq. (14)).  Thereafter p* may, i f  desired, be computed from 
equation (15) of t he  normal momentum. Hence, t he  boundary-layer equa- 
t i o n s  f o r  t h e  horizontal  cylinder f o r  f r e e  convection are 

The tangent ia l  drop of t he  dynamic pressure i s  t o  

n 

au av 

ae ae a ' e  
an2 

u s + v X = a -  I 
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A corresponding estimate of equations (13), f i rs t  rendered non- 
dimensional, gives t h e  two corresponding conditions: 

For a maximum 
mation t o  about 
lower l i m i t s  of 
t he  larger G r ,  
The upper l i m i t  

G r  1 
e2 and 7- 1, i .e .  G r  - - 4 

R e  C 

1 
R e  
- 

E ,  i n  t he  sense of t he  approximations, of 0 .1  (approxi- 
10 percent),  t h i s  gives R e  = 100 and G r  = lo4 as 
t h e  computations. 
t h a t  is, t he  smaller t h e  boundary-layer thickness c .  
i s  then a t ta ined  i f  t h e  boundary layer  becomes turbu- 

The approximation is  therefore  b e t t e r  

len t ,  which (according t o  pa r t  IV) i s  t h e  case f o r  
t he  upper stagnation point, f o r  G r  = 3x109 a t  t h e  equator. The range 
of appl icabi l i ty  of t he  laminar-boundary-layer computations therefore  
l i e s  between G r  = lo4 and G r  = 10 . 

G r  = 3.5x1O8 at 

9 

3. Reduction t o  Ordinary Di f f e ren t i a l  Equations 

The usual  introduction of t he  stream function $ 

eliminates t h e  cont inui ty  equation. By introducing nondimensional 
magnitudes with G r '  = r3gpe/V2 by means of t h e  transformation24: 

there  remain of t he  f i v e  constants (v,  gp, a; 8,  r) of d i f f e r e n t i a l  
equations (14 )  only two i n  t h e  nondimensional combination of t h e  Prandtl  
charac te r i s t ic  Pr  = v / a .  

Equation (17)  i s  not an a rb i t r a ry  transformation which car r ies  
equation (14) over i n to  equation (18), but  a de f in i t e ly  determined 
transformation with the  a i d  of which it i s  possible t o  eliminate G r  

cu 
cjl 
M 
M 

. 

* 
24Gr' re fer red  t o  r i s  more convenient f o r  t he  computation than 

G r  referred t o  d. In  the  f i n a l  r e s u l t ,  t h e  more usual  G r  i s  again 
introduced. - 



NACA TM 1366 19 

b4 
b4 
Ip 
N 

Y 

3 

. 

so  t h a t  it no longer occurs i n  equation (18). 
t i o n  (18) therefore  likewise no longer contains It is  therefore  
unnecessary t o  know t h e  solut ion of equation (18) i f  it i s  of i n t e r e s t  
t o  know only how t h e  solut ion (e.g., velocity, temperature, boundary- 
layer  thickness, heat-transfer coeff ic ient)  of t h e  i n i t i a l  equation (14) 
depends on t h e  G r  number. This dependence of G r  is  already com- 
p l e t e ly  represented by t h e  transformation (17), whereas equation (18) 
contains the  fu r the r  dependence on Pr and on t h e  space coordinates. 
I n  other  words, t h e  solut ion of equation (18), obtained f o r  a de f in i t e  
Pr value24a gives, by means of equation (17), a t  t h e  same t i m e  t h e  
veloci ty  and temperature fields f o r  a l l  G r  values. On the  other hand, 
t h e  transformation (17) without the  solution of equation (18) already 
gives important general information on t h e  flow condition and t h e  heat 
t r ans fe r  f o r  free convection with respect t o  the  dependence on 
From.equation (17) there  follows, if the following expression is  set up, 

The solut ion of equa- 
G r .  

G r .  

t h a t  

That is, the  re la t ive boundary-layer thicknesses decrease with 
t h e  nondimensional ve loc i t ies  increase w i t h  
dimensional temperature drop increases with 
follows d i r e c t l y  t h e  well-known 1/4-power l a w  of heat t r ans fe r  i n  free 
convect ion  : 

Gre1l4 j 
Grl/' j and t h e  non- 
Gr1/4, from which the re  

Nu m Gr1/4 (21) 

These theo re t i ca l  r e s u l t s  agree with those f o r  t h e  rectangular 
p l a t e  and are not r e s t r i c t e d  t o  the latter and t h e  horizontal  cylinder 
alone, but depend on more general assumptions (ref. 19).  
va l id ,  i n  general, f o r  a l l  two-dimensional cases of f r e e  flow with a -  
boundary-layer character (ref. 23) ,  that  is, where t h e  thickness of t he  
heated laminar layer  i s  s m a l l  comparedwith the  distance from the  inc i -  
dence edge and t h e  radius of curvature of t he  w a l l ,  and t h e  lat ter does 
not change discontinuously i n  t h e  flow direct ion.  The existence of 
sharp edges about which t h e  f l o w  occurs is  therefore  excluded. I n  t h i s  
more general  case, there  a re  on the  r ight  s ide  of  equation (13) addi- 
t i o n a l  terms which are determined by the radius of curvature and which 

They are 

0 

24aIt is here assumed as self evident from physical considerations 
t h a t  one and one only such solution exis ts .  

ence 1 (p. 428). 

On t h e  mathematical s ide 
.i of these existence and uniqueness proofs, see the  discussion i n  r e fe r -  
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vary w i t h  t he  a rc  length (a r /ds )  but which drop out i n  t he  estimate 
made under the i n i t i a l  assumptions. Furthermore, i n  place of t he  s ine  
and cosine of the  l i f t  term there  appear functions which determine t h e  
direct ion of t h e  surface element with respect t o  t h e  horizontal  and 
ver t ica l  but which s imi la r ly  do not change anything i n  t h e  t ransfor-  
mations (17)  and t h e  conclusions from equations (20) and (21) based on 
these transformations. 

cu 
-$ 
Er) 
N? 

I n  agreement with these theo re t i ca l  conclusions equation (21) has 
a l read  been confirmed f o r  ve r t i ca l  p l a t e s  (ref. 21), horizontal  cyl-  
i n d e r ~ ~ ~ ,  and cy l indr ica l  l ayers  ( ref .  24), and even f o r  t h e  heat 
t r ans fe r  from t h e  two s ides  of a square horizontal  t h i ck  p l a t e  with 
edges (ref. 25)  and f o r  t he  heat t r ans fe r  with evaporation a t  a v e r t i -  
c a l  cylinder i n  water and carbon te t rachlor ide  (ref. 26) f o r  which t h e  
previously mentioned assumptions a re  not a l l  s a t i s f i e d .  

A reduction of t h e  p a r t i a l  d i f f e r e n t i a l  system (18) t o  systems of 
ordinary d i f f e r e n t i a l  equations i s  attempted by setking 

f o r  example, 

based on t h e  notion t h a t  a l l  t h e  p ro f i l e s  of t he  stream function 
tangent ia l  velocity U(y), and temperature T(y) f o r  the  d i f f e ren t  
azimuths x o f  t h e  cylinder a re  produced by a f f ine  d is tor t ions  by 
means of t h e  azimuth functions g(x) f rom a s ingle  "base 
prof i le"  of t h e  stream function 
base prof i le  of t h e  temperature 
base prof i le ) .  
(primes of p and t denote d i f f e ren t i a t ion  with respect t o  q j  primes 
of f and g denote d i f f e ren t i a t ion  with respect t o  x ) :  

$(y), 

f ( x )  and 
p(q) or  t he  velocity 
t ( q )  (q = normal coordinate of t h e  

p ' (q )  and m e  

Subst i tut ion of equation (22)  i n  equation (18) gives 

2%ee P a r t  I, sect ion 5 ,  f igure  10. 
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A separation in to  functions of the two independent variables 
and q, t h a t  is, a successful application of t h e  assumed expression 
(eq. ( 2 2 ) )  f o r  solving the  equations, i s  possible only if t h e  two func- 
t i o n s  f ( x )  and g(x) can be uniquely determined from t h e  four ordinary 
d i f f e r e n t i a l  equations 

x 

f ' ( x )  = ag(x) 

f (x)f ' (x)gZ(x)  = c s i n  x 

f2(x)g(x)gf  (x) = b s i n  x ( 2 4 4  

f(x)g3(x)  = d s i n  x (24d) 

(where a,b,c,d are i n i t i a l l y  undetermined constants) i n  s p i t e  of t h e  
redundancy of t h e  equations26. 
nation, which i s  the  necessary assumption f o r  t he  app l i cab i l i t y  of 
equation (22) ,  w i l l  be discussed in  more d e t a i l  a f t e r  equation (29) i s  
considered. If such determination i s  possible, there  remain f o r  p(q) 
and 

The poss ib i l i ty  of such unique determi- 

t ( q )  two ordinary d i f f e r e n t i a l  equations: 

] (25) 
(b + 4 P ' W  - cP(q)P"(q) = dP"' (9) + t ( q )  

t"(9) + a P r  p(q) t ' (q )  = 0 

I n  sect ion 4, equation (24) w i l l  be solved and i n  sect ion 5 equation (25) 
w i l l  be discussed. 

4. Determination of t he  Azimuth Functions F(x) and G(x) 

(a) Se t t ing  up of t he  two d i f f e ren t i a l  equations f o r  F(x). - The 
boundary values of f ( x )  and g(x) which are required f o r  solving equa- 
t i o n  (24) a re  determined from physical considerations. From 

it follows t h a t  

26The author i s  indebted t o  D r .  A.  Naumann, Leipzig, f o r  several 
m a t  hematic a 1  suggest ions. 
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Otherwise, t he  temperature of t he  cylinder surface would a l so  be t h e  
temperature i n  t h e  f i e l d  along t h e  e n t i r e  normal at the  lower stagna- 
t i o n  point, which cannot be the  case. 
then obtained 

From equation (24a) there  i s  

f f ( x  = 0 )  = aQo (26b) 

Since the tangent ia l  velocity at the  lower stagnation point must, f o r  
reasons o f  symmetry, be d i f fe ren t ,  there  follows from equation (22d) : 

f ( x  = 0) = 0 ( 2 6 4  

The system of equation (24) with t h e  boundary conditions (26a), (26b), 
and (26c) thus contains f i v e  free avai lable  constants a,b,c,d, and go, 
which are determined i n  subsequent computation. 

By introducing t h e  normed f inct ionsZ7 : 

g(x> G(x) = - 
go 

equation (24) may be  transformed to :  

F' = G  

with the  boundary conditions 

F(x = 0 )  = 0 F'(x = 0) = 1 G(x = 0)  = 1 (29) 

A necessary assumption f o r  the app l i cab i l i t y  of t h e  expressions of 
equation (22) f o r  solving the  equations i s  t h a t  t h e  two functions 
and G can be uniquely determined from t h e  four  equations (28a) t o  
(28d). This would be the  case i f  it could be proven t h a t  t h e  four  

F 

27By normed i s  meant fully determined a l so  with respect t o  a 
fac tor .  

. 

N 
d 
M 
M 

. 
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equations are not independent of one another, but t h a t  two equations 
follow from t h e  other  two. This proof is  p a r t l y  possible  only inso- 
far as one equation (for su i tab le  choice of t h e  constants) i s  a con- 
sequence of t h e  remaining equations. Thus, elimination of G with 
the  aid of equation (28a) gives 

C 

Equation (3Oc) i s  thus  a consequence of equation (3Ob) i n  t h e  case t h a t  
t h e  following f i r s t  condition f o r  t he  constants i s  sa t i s f i ed :  

d = c/a (31) 

Set t ing  f o r  br iefness  

c/a2go* = a 

the re  then remain f o r  t h e  determination of F the  two equations 

F F13 = a sin x ( 331 1 
I F2 F' F" = p s i n  x (3311) 

with f r e e l y  avai lable  values of a and p. A s  a necessary assumption 
f o r  t h e  app l i cab i l i t y  of equation (22), there  remains t h e  f i r t h e r  con- 
d i t i o n  t h a t  t h e  two equations I and I1 possess two equal (or a t  l e a s t  

L approximately equal) solutions. 

This proof w i l l  be obtained by solving equations I and I1 by a 
x = ~ / 2 .  For 

Q = x - ~ r / 2 ,  I and I1 are transformed i n t o  
power-series development above and b e l o w  t h e  equator 
t h i s  purpose, with 

m 
where t h e  primes now denote d i f fe ren t ia t ion  with respect t o  9 .  
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(b) Solution of d i f f e ren t i a l  equation (I) f o r  F. - The value of 
a, by the boundary values of equation (29), i s  first determined as 

as i s  seen from the  f irst  term of the  power-series development of 
equation (331) about the  point 
equation (341) : 

x = 0. From t h e  expression f o r  solving 

FI(o) = aO(l  + c1 9 + c2 92 + .  . .) (35 1 

there  follows 

( 3 6 4  FI(O = 0 )  = a. F I ‘ ( q =  0 )  = a. c1 

and by subst i tut ing i n  equation (341) 

Substi tution of expression (35) i n  d i f f e r e n t i a l  equation (341) 
gives the unknown coeff ic ients ,  which are taken up t o  the  f i f t h ,  i n -  
clusive,  and which can be successively determined i n  terms of cl: 

cu 
dr 
M 
Er) 

1 1 5 1 5 
c2 = - g c12 c3 = - - 18 c 1  + 54 c4 = 3 - 72 

13 c 3 + - c 5  c 5 = - -  360 ‘1 - 324 1 216 1 
1 5 

752 
1 5 1 

c1 + 54 c13 c4 = c12 c3 = - - - - 1 c2 = - g c12 

1 5 c 3 + - c 5  13 
c 5 = - -  360 ‘1 - 324 1 216 1 

The boundary condition 
gives f o r  t h e  value of 
t he  f i f t h  degree which i s  solved by t r i a l  

F1(V = -x/2) = 0 
c1 

according t o  equation (29) 
t h e  solut ion of an algebraic equation of 

O f  t he  f ive  possible real roots  it i s  necessary t o  choose t h a t  one f o r  
which no fur ther  zero of F1 i s  obtained between cp = 0 and 9 = -~r/2.  
me coeff ic ients  then assume, according t o  equation (37),  t h e  values 

~1 = + 0.581 C 2  = - 0.05626 ~3 = - 0.01412 

~4 = - 0.00165 ~5 = - 0.00066 

According t o  equations (36a), and (36b), t he re  i s  obtained 
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and the  numerical solut ion of F1(cp) i s  thereby completely given (see . t a b l e  111). 

It may be remarked27a t h a t  f o r  equation (331) a solut ion w a s  a l s o  
i n  powers of 

F at tha t  
obtained by a power-series expansion at t h e  point 
s i n  (x/2) which, because of the  f a c t  that  t h e  curvature of 
point is  zero, converges with par t icu lar  rapidi ty:  

x = 0 

This solut ion assumes a t  t h e  equator the values 

P(X = ./2) = 1.500 fl'(x = x/2) = 0.874 (4 
which are i n  good agreement with t h e  values of equation (40) of t h e  
series expansion a t  t he  equator. In t h i s  way, t h e  su f f i c i en t  conver- 
gence o f  FI((P) with t h e  f i v e  computed terms i s  assured, and a good 
check is  obtained against  computation errors.  The so lu t ion  F" w i l l  
not be used i n  what follows; t h i s  is because of t he  s ingular  behavior 
of equation (3311) at  the  point 
therefore  be car r ied  out by t h e  se r i e s  expansion a t  the  equator. 

c 
x = 0, and the  i d e n t i t y  proof must 

(c)  Solution of d i f f e r e n t i a l  equation I1 f o r  F. - For 
t i o n  (34II), corresponding t o  equation (35), the  following 
i s  assumed: 

FI1(q) = bO(l + dlq + d2'$ + . . .) 
Subst i tut ion i n  t h e  d i f f e r e n t i a l  equation gives t h e  follow 
f o r  t h e  constants: bo and dl are arb i t ra ry  

P d2 = 
a O 4 d l  

dl d3 = - - (d12d2 + d22) 
3 

equa- 
expres s ion 

ng values 

(43) 

where, on account of t h e  length of t h e  expressions, d4 and d5 are 
not given as functions of dl and d2. The function F1' thus depends 

27aAcknowledgment i s  made t o  Prof. W. Mhler, Aachen, f o r  sthe 

quadratures by separation of t he  variables. One of t he  quadratures i s  
not i n  closed form, however, bu t  can be car r ied  out only by a s e r i e s  

t he  one employed. 

b suggestion t h a t  t h e  solut ion of equation (331) may be reduced t o  two 

expansion so  t h a t  t h i s  method would not be e s sen t i a l ly  d i f f e ren t  from 
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on t h e  as yet  f r e e l y  avai lable  values of bo, dl, and p .  The s o h -  
t i ons  F1 and F1’ a re  equal if the  corresponding coef f ic ien ts  of t h e  
series are equal. Therefore, t he  as ye t  undetermined coef f ic ien ts  are 
equated as follows: 

- 

bo = as d l  = ~1 (44 

The condition d2 = c2 gives 

o r  with equations (36b) and (44) 

All t h e  coef f ic ien ts  may now be expressed i n  terms of dl: 

1 2 5  - 5 d14 d4 = + - 72 d l  1 2  a2 = - g a, 

Comparison of  t h e  coef f ic ien ts  of t h e  two se r i e s  f o r  F* and FI1 
gives 

1 bo - 89 P 0 d l  - ~1 5 0 d2 - c Z =  0 dg - ~3 = 18 ~1 

. 

This r e s u l t  s t a t e s  t h a t  t he  solut ions of t he  two d i f f e ren t  d i f fe ren-  
t i a l  equations (341)  and (3411) agree at the  equator i n  t h e  value of t he  
function, i n  t h e  tangent, and i n  the  curvature, bu t  not i n  t h e  higher 
derivatives i n  which they d i f f e r  fundamentally t o  a s m a l l  degree. F1 
and Frr a r e  approximately, bu t  not rigorously, equal. The system (24) 
is, s t r i c t l y  speaking, overdetermined and has only approximately unique 
solution. This solut ion of expression (22)  i s  not rigorously, bu t  
only approximately, valid.  Because of t he  agreement of FL and FI1 
a t  t h e  equator up t o  and including the  curvature, however, these d i f f e r -  
ences become more appreciable i n  the  neighborhood of t h e  lower and 
upper stagnation p’oints where the  i n i t i a l l y  assumed boundary-layer 
assumptions a re  not s a t i s f i ed .  
thus gives an approximate solut ion of t h e  boundary-layer equations with- 
i n  t h e  accuracy l i m i t s  determined by t h e  physical approximations of t he  
boundary-layer assumptions. .. 

The method t h a t  has here been employed * 
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The numerical computation of equations (44) and (46) with a. 
and c 1  according t o  equations (40) and (39) gives: 

bo = 1.504 d l  = 0.581 d2 = - 0.05626 dg = + 0.01816 

Table I11 shows t h e  values of t he  functions 
according t o  eqgationg (39), (40), ando(48), with su f f i c i en t  agreement 
between x = 30 , 150 and even a t  165 (graphically interpolated f o r  
F"). The negative value of F1' f o r  x = 0 has no s ignif icance 
since,  on account of t he  singular behavior of equation (3411) f o r  
F = 0, t h e  series (42) beyond t h i s  singular point no longer represents  
t h e  solut ion of t h e  d i f f e r e n t i a l  equation. For t h e  fu r the r  equations, 
F1 
property of vanishing a t  t h e  lower stagnation point.  

FI(9) and FII((p) computed 

i s  employed because only t h i s  function possesses t h e  required 

d) Determination of G. - The term G i s  determined according 
t o  eqiat ion (28d) where, according t o  equation (49), d = ag04. 
Tzble I11 shows t h e  computed values based on F'. 

5. Determination of Basic Prof i les  p(q)  and t ( q )  

The constants b, c, d which occur i n  equation (25) can now, with 
t h e  aid of equations (31), (32a), t o  (32c), and (45) be expressed i n  
terms of a and go: 

Equation (25) then becomes 

2/3 a' go4 p V 2  - a 2 4  QO p p" = a go4 p n c  + t 

t" + a Pr p t '  = 0 

with t h e  boundary conditions: 

q = o : p = o  p'  = 0 t = l  

Equation (50) f o r  a = 1 and go = 1 may now be numerically integrated.  
The following values were chosen for t h e  as yet f r e e  remaining constants 
a and go 
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a = 3  
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(51) 

equation (50) becomes 

(52 1 
p"' + 3 p p" - 2 p'2 + t = 0 

t" + 3 Pr p t1 = 0 

This system with t h e  same boundary conditions and f o r  Pr = 0.733 
(diatomic gases) has already previously been numerically in tegra ted  by 
E. Pohlhausen f o r  the  v e r t i c a l  p l a t e  s o  t ha t ,  because of t h e  introduc- 
t i o n  of the  normed functions F and G and t h e  consequent a v a i l a b i l i t y  
of t h e  constants, a new numerical in tegra t ion  is  unnecessary. The 
stream function p(q) and temperature function t ( q )  correspond t o  t h e  
functions Their values a re  given i n  
reference 21  i n  tabular  form (ref .  4, p. 187) .  
t i ons  of t h e  veloci ty  p ro f i l e  
t ( q )  a re  given i n  f igures  13 t o  16 (continuous curves). 

( ( E )  and 0(c )  of Pohlhausen. 
Graphical representa- 

p ' (q)  and of t he  temperature p r o f i l e  

N * 
M 
M 

6. Complete Solution f o r  Velocity and Temperature Fields  

With t he  values of equations (51) f o r  a and go, the  azimuth 
functions 
determined. For 

f ( x )  and g(x) according t o  equation (27) a re  now uniquely 

a go = 33/4 = 2.280 go = 3-ll4 = 0.760 (53) 

the re  i s  obtained 

f (x )  = 2.280 F(x) g(x) = 0.760 G(x)  (54) 

Table IV shows t h e  values of f (x ) ,  g(x),  and f (x ) .g (x )  computed from 
F1 and G of table 111. Figure 17  shows these values graphically.  

With t h e  values f ( x )  and g(x) from t ab le  IV, t h e  values  p(q)  
t ( q )  f r o m  t h e  t a b l e  of Pohlhausen and t h e  transformations (16), and 

(17), and (22)  there  i s  obtained the  complete solut ion of t h e  boundary- 
layer  equations (14) f o r  t he  veloci ty  (u and v )  and temperature 
f i e l d s  (e )  obtained without any empirical value. Collecting r e s u l t s  
yields  (see a lso eq. (E;) and (20) f o r  simultaneous passage from G r '  
t o  G r  (Gr = 8 G r ' )  : 
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Y 
.u(s ,n)  = - r 

v(s,n) = - 

29 

S with x = - and q = r 
I 

For the  determination of t h e  normal velocity v it is required t o  
know f l ( x )  and g t ( x ) .  The term f ' ( x )  is, according t o  equation (24), 
determined by means of g(x); g' (x) was determined by graphical d i f f e r -  
en t i a t ion  of g(x)28. Here t h e  qual i ta t ive descr ipt ion of t h e  normal 
veloci ty  obtained from the  streamline picture  is  suf f ic ien t .  It can be 
shown t h a t  t h e  boundary conditions of u, v, 8 f o r  q = 0 are cor- 
r e c t l y  assumed. If t h e  assumption n e r  which was made with respect  
t o  t h e  solut ion of equation (14) i s  applied f o r  very large q, t he re  
are obtained f o r  u and 8 t he  correct value zero; but  f o r  v, i n  
contradiction t o  the  boundary conditions (E'), a f i n i t e  value i s  ob- 
ta ined which i s  r e l a t ed  t o  t he  f a c t  that  the  cylinder curvature w a s  
neglected . 

The boundary-layer thickness, tangent ia l  velocity, temperature, 
and heat- t ransfer  coeff ic ients  according t o  equation (55) behave as 
follows. With regard t o  t h e  dependence of these magnitudes on G r ,  
t he re  hold first of a l l  the  considerations of sect ion 3 i n  connection 
with equations (20) and (21).  The dependence on t h e  cylinder azimuth 
i s  such t h a t  a l l  p ro f i l e s  of t he  tangent ia l  velocity and temperature 
a re  obtained by a f f ine  d is tor t ions  from t h e  basic  p ro f i l e s  p ' (q )  and 
t ( q ) .  

The value l /g(x)  ( f ig .  1 7 )  represents t he  'extension' of t h e  t e m -  
perature and veloci ty  prof i les  normal t o  t he  surface with increasing 
azimuth, t h a t  is, t h e  development of any charac te r i s t ic  distance from 
t h e  w a l l ,  f o r  example, of t h e  place of m a x i m u m  velocity (q  = 0.95) o r  
of t h e  boundary-layer thickness t o  be defined later (q = 2.18). In  
accordance with t h i s ,  t he  boundary-layer thickness a t  the  lower s tag-  
nat ion point possesses a f i n i t e  approximately constant value o v e r  a 

2%he values are not given here. 
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la rge  azimuth range but  increases a t  f i rs t  gradually then more and more 
rap id ly  and a t t a i n s  a t  t he  upper stagnation point a theoret ical l j r  in -  
f i n i t e l y  large value (upward current of w a r m  air) .  The function g(x), 
s ince it is  proportional t o  t h e  temperature drop, likewise represents  
t h e  variation of t h e  l o c a l  heat-transfer coef f ic ien t  with t h e  cylinder 
azimuth. 
constant slope connects with t h e  values of t he  other  s ide  of t h e  cyl-  
inder. 
case; g(x) has a sharp peak which i s  associated with t h e  f a c t  t h a t  t h e  
boundary-layer assumptions a t  t h i s  point strongly deviate from t h e  
ac tua l  conditions (normal velocity large as compared with t h e  tangen- 
t i a l  velocity).  Under ac tua l  conditions t h i s  peak i s  balanced out by 
a very sharp minimum value as i s  shown by t h e  value of Nu along the  
cylinder erimeter computed from the  schl ieren pictures  of E. Schmidt 
( re f .  22)". No quant i ta t ive comparison of t h i s  experimental curve 
of  g(x) w i t h  the  theo re t i ca l  curve given herein can be given because 
the  conditions of t h e  two-dimensional problem are so l i t t l e  s a t i s f i e d  
f o r  t h e  schlieren p ic tures  (pipe length = 2 times cylinder diam.) t h a t  
t h e  computed heat- t ransfer  coeff ic ient  i s  40 percent greater  than t h a t  
of t h e  t e s t s  of Koch ( re f .  22) .  

A t  t h e  lower stagnation point,  g ( x )  i s  constant and with 

A t  t h e  upper stagnation point (x = ~ r )  t h i s  i s  no longer t h e  

The development of t h e  tangent ia l  veloci ty  with t h e  azimuth, t h a t  
is, the  increase of any characterizing velocity, f o r  example the  max- 
imum velocity, i s  described by f ( x ) .  g(x) (see f i g .  1 7 ) .  The veloci ty  
increases from the  value zero a t  t h e  lower stagnation point {up t o  60° 
approximately l i nea r ly )  t o  a maximum a t  about 128' and, on approaching 
t h e  upper stagnation point (convergence of  t h e  flow on eitkier s ide )  
rapidly decreases t o  zero. This physically correct  behavior of t h e  
solution a t  the  upper stagnation point i s  not introduced as a boundary 
condition but i s  obtained as a necessary consequence of t he  theory. 

An o v e r - a l l  p ic ture  of t he  velocity and temperature f i e l d s  i s  
given by t h e  streamlines and isotherms ( f i g s .  11 and 1 2 ) .  
computed from t h e  equations 

They are 

. 

for various values of t h e  constantsm. The scale  of t h e  representat ion 

6 LYSee f igure 13 f o r  maximum G r  = 16x10 . 
30The streamline picture  f o r  azimuth in t e rva l s  of 15' and i n  addi- 

t i o n  f o r  5 O ,  loo, 170°, 175'; t he  isotherm pic ture  f o r  azimuth in t e rva l s  
of 30' and i n  addi t ion f o r  165O, 170°, 175'. 

cu 
dc 
M 
M 

. 



. 

w w 
8 

NACA TM 1366 31 

holds f o r  Gr = 104j f o r  Gr = LO6 the distances from the  cylinder 
surface should be reduced by a fac tor  o f  3.16 and f o r  
A t  t he  lower and equator ia l  neighborhood of t h e  cylinder up t o  an az i -  
muth of about 105', t h e  flow near t h e  w a l l  i s  directed toward t h e  sur- 
face, while above it is directed away from t h e  surface upwards. In  
t h i s  respect t he  theo re t i ca l  solution f o r  t h e  cylinder d i f f e r s  f'unda- 
mentally from t h a t  f o r  the  vertTcal plate,  which gives only a flow 
toward t h e  plate .  The isotherms a t  the lower pa r t  form almost con- 
cen t r i c  c i rc les .  At t h e  upper stagnation point (upward warm current)  
t he  isotherms theo re t i ca l ly  go toward infinity,. whereas ac tua l ly  (corre- 
sponding t o  t h e  gradual dissolut ion and spreading out of t h e  warm up- 
streaming a i r )  they close a t  a re la t ive ly  la rge  distance over t h e  
cylinder.  
maximum tangent ia l  velocity. 

Gr = 108, by 10. 

The isotherm 0.53 gives a t  t h e  same t i m e  t he  place of t he  

7.  Heat-Transfer Law 

From the  expression f o r  t h e  quantity of heat dQ passing from 
an element of area df, 

t he  value of t he  temperature gradient a t  t h e  w a l l  obtained f r o m  
equation (55c) 

( t tO = t t ( q  = 0)  = -0.508), and t h e  defining equation f o r  l oca l ly  
variable heat - transf e r  coeff ic ient  a( x) 

there  i s  obtained 

a(x).r = g ( x ) ( - t o t )  G r  t 114 
A (59) 

From t h i s  there  i s  obtained f o r  t h e  dependence of t he  nondimensional 
l o c a l  heat- t ransfer  coeff ic ient  on the cylinder azimuth x and t h e  
G r  number ( G r d  = 8 G r c ) 3 0 a :  

masince several formulas of t h i s  sect ion w i l l  be used l a t e r  i n  
P a r t  111, and i n  order t o  a v o i d  misunderstandings, indices (e.g., d,h,H) 
f o r  t he  charac te r i s t ics  Gr and Nu a re  wr i t ten  which indicate  t h e  
lengths  with which these magnitudes are formed. 
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. see figure 18. 

To compute t h e  mean heat- t ransfer  coef f ic ien t  averaged over t he  
cylinder perimeter, 

there  i s  required t h e  mean value 

I 

which, by planimetering g(x) ( f i g .  1 7 ) ,  i s  found t o  be 
- 
g = 0.616 

It may also be computed by the  following r e l a t i o n  from equation (24a) 
with a = 3 according t o  equation (51) 

3 n g = f ( R )  (64) 
- 

which gives g = 0.620. 
t h i s  value takes  i n t o  account t he  t o t a l  curve 
on t h e  end point of t he  s e r i e s  expansion 
following is  then obtained f o r  t h e  mean heat- t ransfer  coef f ic ien t  as a 
function of G r  f o r  f r e e  flow a t  a horizontal  cylinder 

However, t h e  value 0.616 i s  preferable  because 
g(x) and does not depend 

From equation (60) the  f ( x ) .  

A comparison of t h i s  t heo re t i ca l  heat- t ransfer  coef f ic ien t  f o r  diatomic 
gases (Pr = 0.74) with t e s t  r e s u l t s  i s  given i n  Part  I, sect ion 5; see 
a lso  figure 10. 

8. Comparison of Theoretical  Velocity and Temperature 

Fields with Available Measurements 

The comparison of t h e  computed veloci ty  and temperature f i e l d s  i s  
car r ied  out with t h e  measurements of Jodlbauer (ref. 16)  which a r e  t h e  
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only ones thus far available31. 
ent  G r  values, t he  following ones were computed: 

Of the f i e l d s  measured f o r  s i x  d i f f e r -  

2 r  = 9 em, tw = 99.Z0, t = 18.1°, G r  = 3.76X1O6 ( f ig s .  13, 14) 

2r = 5 cm, G r  = 6.54x105 ( f igs .  15, 16) tw = 104.6O, t = 18.1°, 

The bes t  agreement with theory i s  t o  be expected f o r  t h e  maximum Gr. 
On the  bas is  of the  theory it would be desirable  t o  have measurements 
f o r  t he  la rges t  possible laminar  G r ,  t ha t  i s  (see Part  I V )  values of 
about 3 . 5 ~ 1 0 ~ ~  which could be real ized i n  a i r  a t  20' C a t  a surface 
temperature of looo C w i t h  cylinders of 42 centimeters diameter. 

I4453 ln&Q5 

The comparison with the  theory was car r ied  out i n  such manner tha t  
a l l  velocity p ro f i l e s  u(s,n) and temperature p ro f i l e s  €J(s,n) corre- 
sponding t o  a value of 
computed f o r  the  theo re t i ca l  basic prof i les  
representat ion of which they must a l l  coincide. 

G r  were, w i t h  t he  a i d  of equation ( 5 5 ) ,  r e -  
p ' (q )  and t ( q )  i n  t h e  

In  the  case of t he  velocity prof i les  ( f igs .  13 and 14), there  i s  
a regular  deviation i n  t h a t  t h e  measured ve loc i t ies  are greater  than 
the  computed ones, t he  deviation f romthe  theory i n  t h e  maximum velocity 
amounting on the  average t o  22 percent f o r  t h e  smaller and 17 percent 
f o r  t he  l a rge r  value of Gr. A par t  of the  deviations occurring f o r  
la rge  distances from t h e  w a l l  beyond t h e  maximum value should be 
ascribed t o  t he  uncer ta in t ies  i n  the  d i f f i c u l t  measurements of such 
s m a l l  a i r  veloci t ies ,  as can be seen from the  following discrepancies. 
The measured ve loc i t ies  a t  t he  azimuth 60° f o r  
considerably above t h e  theore t ica l  curve, whereas f o r  
they l i e  on the  theo re t i ca l  curve. On t h e  other  hand, t he  ve loc i t ies  
measured a t  x = 30° f o r  G r  = 6 . 5 4 ~ 1 0 ~  show strong deviations upward, 
whereas f o r  G r  = 3 . 7 6 ~ 1 0 ~  they a re  i n  agreement with the  theory. The 
measured distance from the  w a l l  of the maximum value of  t he  velocity i s  
everywhere i n  very good agreement w i t h  t he  theory. 

G r  = 3 . 7 6 ~ 1 0 ~  l i e  
Gr = 6 . 5 4 ~ 1 0 ~  

The measured temperature prof i les  show very good agreement with 
the  theory even f o r  t he  azimuth of 165O. 
noted f o r  a l l  azimuths and Gr numbers f o r  medium distances from the  
w a l l .  The s m a l l  deviations a t  small distance from t h e  w a l l  can be 
ascribed pa r t ly  t o  the  f a c t  t h a t  the  condition f o r  t he  isothermal sur-  
face w a s  not qui te  s a t i s f i e d  i n  t h e  t e s t s .  

A s m a l l  regular deviation is  

The measured temperature 

31Acknowledgment i s  made t o  Prof. E. Schmidt and Dr. K. Jodelbauer 
f o r  t h e i r  a i d  i n  providing the  data. 
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drops a t  t h e  w a l l  for 
smaller than t h e  values given by the  theory, while f o r  
they a re  1 percent higher32. 

G r  = 6.54X105 a r e  on the  average 3 percent 
G r  = 3 .76d06 

It is likewise of i n t e r e s t  t o  compare the  so lu t ion  based on t h e  
boundary-layer theory f o r  t he  v e r t i c a l  p l a t e  with the  corresponding 
tes t  results. Reference 2 1  ( f ig s .  20 t o  23 )  a l so  shows the  veloci ty  
f i e l d s  t c  have stronger deviations than the  temperature f i e l d s .  For 
the  s m a l l  p l a t e  with smaller deviations,  t h e  measured ve loc i t i e s  a l s o  
l i e  somewhat higher than t h e  theo re t i ca l  valuesj but  f o r  t h e  l a rge r  
p l a t e  with la rger  deviations the  contrary i s  t rue .  
f i e l d s ,  par t icu lar ly  for t h e  large p la te ,  no regular  deviat ion can be 
established between theory and experiment. The deviations occurring 
f o r  t he  p la te  a r e  c l ea r ly  smaller i n  comparison with those f o r  t h e  
cylinder.  
p l a t e  only t h e  boundary-layer terms of t he  order C2 <<1 ( r e c t i l i n e a r  
flow) were neglected, whereas f o r  t he  case of  t he  cylinder t he re  were, 
i n  addition, neglected terms of t he  order 
t o  the  curvature. 

For the  temperature 

T h i s  i s  t o  be ascribed t o  t h e  f a c t  t h a t  i n  t he  case of the  

el <<1 t h a t  were r e l a t e d  

111. HYDRODYNAMIC AND THERMAL COMPARISON BETWEEN VERTICAL 

PLATE AND HORIZONTAL CYLINDER FOR FREE CONVECTION 

AND FOR PLATE I N  P-L FLOW 

1. Abstract 

Now t h a t  the  theo re t i ca l  boundary-layer solut ions f o r  t he  v e r t i c a l  
p l a t e  and the  horizontal  cylinder f o r  f r e e  convection have been obtained, 
it i s  of advantage t o  compare these two standard bodies of two- 
dimensional f r e e  flow with regard t o  t h e  shape of t h e  stream and t h e  
heat t ransfer .  Similarly,  a comparison of t he  boundary-layer develop- 
ment between the  v e r t i c a l  p l a t e  f o r  f r e e  convection and for t he  p l a t e  
i n  pa ra l l e l  flow (Blasius solut ion of t he  boundary-layer equations) i s  
of i n t e re s t .  The following fea tures  are cha rac t e r i s t i c  f o r  the  th ree  
types of flow. 

32The f a c t  t h a t  t h e  values of t he  heat- t ransfer  coef f ic ien t  ob- 
ta ined  from the  f i e l d  measurements of Jodlbauer through in tegra t ion  of  
t h e  temperature gradients a t  t he  w a l l  over t he  cylinder perimeter l i e ,  
on the  average, 4 percent higher than t h e  theo re t i ca l  values (see 
f i g .  10) i s  due t o  t he  deviation between the  t h e o r e t i c a l  and the  ac tua l  
conditions i n  the  neighborhood of the upper stagnation point .  

N 

. 



NACA TM 1366 35 

. 

The boundry-layer thickness of t h e  p l a t e  -n p a r a l l e l  flow in-  
creases with the  square root  of t he  distance from t h e  incidence edge; 
t h a t  of t he  v e r t i c a l  p l a t e  i n  free convection increases, however, as 
the  four th  root of t h e  height above the lower edge (cf .  eqs. (69) and 
( 7 1 ) ) .  
p a r a l l e l  flow r e s u l t s  i n  i n f i n i t e l y  large velocity gradients, and f o r  
t he  f r e e  p l a t e  results i n  an in f in i t e ly  la rge  temperature drop and an 
i n f i n i t e l y  large loca l  heat- t ransfer  coefficient a t  t h e  lower edge. 
In  the  case of t h e  cylinder, on the  contrary, t h e  boundary layer  starts 
at  the  lower stagnation point of t h e  horizontal cylinder with a f i n i t e  
thickness and the rea f t e r  with f i n i t e  velocity and temperature gradients 
and a f i n i t e  l oca l  heat- t ransfer  coefficient ( f ig .  1 7 ) .  It increases 
according t o  a complex l a w  ( l /g(x) ,  see eqs. (70) and (82) )  and a t  the  
upper stagnation point reaches a theore t ica l ly  i n f i n i t e  thickness, with 
vanishing velocity and temperature drops normal t o  the  surface (upward 
stream of w a r m  a i r )  and with a vanishing heat- t ransfer  coef f ic ien t .  

Both start with the  thickness zero, which f o r  t h e  p l a t e  i n  

In  s p i t e  of these fundamental differences it i s  possible t o  set 
These show on the  up a number of r e l a t ions  between t h e  t h r e e  cases. 

one hand a close hydrodynamic and thermal kinship which i s  due t o  t h e  
boundary-layer character of  t h e  d i f f e ren t i a l  equations underlying the  
theo re t i ca l  solutions.  On the other  hand, they give p rac t i ca l  view- 
points  with regard t o  t h e  application of rectangular p l a t e s  or hori-  
zontal  cylinders f o r  t he  heat t ransfer .  
of a l l  necessary t o  represent t h e  Reynolds numbers of t he  cha rac t e r i s t i c  
length, of t h e  boundary-layer thickness, and of t h e  nondimensional l oca l  
and average heat- t ransfer  coeff ic ients  as functions of  t he  Grashof 
numbers of t h e  p l a t e  and cylinder, which i n  tu rn  requires  the  introduc- 
t i o n  of a boundary-layer thickness ( f l o w  discharge thickness) f o r  t h e  
veloci ty  p ro f i l e  of t h e  f r e e  convection. A knowledge of t he  dependence 
of R e  of t he  boundary-layer thickness on G r  of t he  plate ,  as w e l l  
as of t h e  azimuth and Gr of t h e  cylinder, i s  i n  addition required 
f o r  t h e  later evaluation of  t h e  t e s t s  as  regards t h e  occurrence of 
turbulence (Part  I V )  f o r  f r e e  convection a t  the  p l a t e  and the  cylinder. 

For t h i s  purpose it i s  first 

2. Boundary-Layer Thickness f o r  Free Convection 

It i s  f i rs t  necessary t o  determine the  magnitude t o  be associated 
with t h e  boundary-layer thickness. For t he  veloci ty  p ro f i l e  u(y) of 
t h e  p l a t e  i n  p a r a l l e l  flow (U = maximum veloci ty) ,  Prandtl  and h i s  
coworkers, as i s  known, introduced the displacement thickness 6", 
defined as 

P- 
(U = U )  dy )t 6 * u =  

which i s  a measure of the  decrease i n  t h e  flow discharge as a result 
of t he  f r i c t ion .  
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For the  velocity p ro f i l e  of t he  f r ee  convection u(y) ,  a f l o w  
discharge thickness 6 is  introduced which is  hydrodynamically equiv- 
a len t  t o  t h e  displacement thickness, being l i k e  the  l a t t e r  character-  
i s t i c  of t he  development of t h e  f r i c t i o n  layer,  which i n  t h i s  case 
takes up the  e n t i r e  flow: 

r w  
Jo u d y  

6 - u =  

o r  expressed i n  words: Through the  flow discharge thickness 6 would 
flow the  same f l u i d  mass with the  maximum veloci ty  as ac tua l ly  flows 
with the  t o t a l  stream. 

I n  the nondimensional velocity p r o f i l e  p ' (q )  (q = nondimensional 
distance from the  w a l l ,  p = stream function) which occurs i n  the  theo- 
r e t i c a l  solution, t h e  discharge flow thickness is  denoted by 
m a x i m u m  velocity by From equation (67) there  i s  then 

and w i t h  t h e  numerical values: 

= 0.275 p;ax 

p(m) = 0.60 33 

t h e  value of % i s  obtained as  

For or ientat ion purposes=, it i s  assumed t h a t  t h e  veloci ty  maximum 
l ies  a t  q = 0.95 
q = 1.85. 

and t h e  point of i n f l ec t ion  of t h e  p r o f i l e  at  

With t he  values of q6 t i ons  (72)  and (82), respectively,  there  i s  obtained f o r  t he  ve r t i ca l  
p la te ,  where h i s  the  distance from the  lower edge: 

f o r  t he  p l a t e  and cylinder f rom equa- 

3%xtrapolation f r o m  last  computed value p(6.0) = 0.5928. 

34See continuous curves i n  f igures  13 and 15. 
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and f o r  the  horizontal  cylinder of diameter d a t  azimuth x 

5 d g ( x ) d 4  Gr2/4 = 2.18 (70) 

3. Nondimensional Representation of  Theory f o r  Ver t ica l  P l a t e  

(a) Reynolds numbers. - From the  theo re t i ca l  solut ion for t h e  
v e r t i c a l  p l a t e  given by Schmidt and Pohlhausen (ref. 21)  t h e  following 
expression is  obtained according t o  the i r  equations (23), (24), and 
(31)~~, since 
from t h e  w a l l  y: 

c4 = Grh/4h3, for t h e  velocity u and t h e  dis tance 

For the  flow discharge thickness y = 6 
u = U, t he re  i s  then obtained 

and t h e  maximum velocity 

o r  

and using t h e  abbreviations Rh = U-h/V and Rg = U*S/v and subs t i -  
t u t i n g  t h e  numerical values f o r  pAax and q 

Elimination of G r h  
expression as the  r e l a t i o n  between 
height of t he  p l a t e  fo r  a ve r t i ca l  plate  i n  free flow: 

from the  las t  two equations gives the  following 
Re of the  flow thickness and the  

35The distance from t h e  lower edge i s  denoted by h instead of x, 
t h e  nondimensional distance from t h e  wall e by q, t h e  nondimensional 
stream function ( by p. 
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(b) Nusselt charac te r i s t ics .  - For t h e  l o c a l  heat- t ransfer  coef - 
f i c i e n t  a(h)  a t  t h e  height h above the  lower edge, t he  following 
equation holds (ref. 21)*: 

a(h)  = X ( -  t o ' )  
h (77)  

(to' = -0.508 i s  the  value of the  der ivat ive of t he  nondimensional 

temperature function t ( q )  f o r  
numerical values may be subst i tuted:  

q = 0)  or, i n  nondimensional form, t h e  

9 = 0.359 Grh1/4 . (78) 

The variation of t h e  heat- t ransfer  coef f ic ien t  along t h e  variable 
height h of a p l a t e  of t o t a l  height H i s  most conveniently obtained 
by introducing a l o c a l  heat- t ransfer  coef f ic ien t  which has been made 
nondimensional by dividing through by H 

(79) 

The heat-transfer coeff ic ient  ( f ig .  18) a t  the  lower edge of t h e  p l a t e  
with zero boundary-layer thickness i s  theo re t i ca l ly  i n f i n i t e l y  la rge  
and then continuously drops with t h e  reciprocal  of t he  four th  root  of 
t he  height. 

The mean heat- t ransfer  coef f ic ien t  corresponding t o  a p l a t e  of 
height H 

CL, = 1 a(h)dh 
H 

i s  obtained from equation (77) as 

or, nondimensionalized and with numerical values subs t i tu ted  ( f i g  . 18), 
as 

- ClmH = NuH = 0.479 G ~ H ~ / ~  (81) X 

hl * 
M 
M 

*Extrapolation. 
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4. Nondimensional Representation of Theory f o r  Horizontal Cylinder 

(a) Reynolds numbers. - The theore t ica l  solut ion given previously 
f o r  t h e  tangent ia l  velocity u (eq. (55a)) and t h e  distance n from 
the  w a l l  (eq. (55d)) f o r  t he  azimuth x of a horizontal  cylinder, 
with t h e  values n = 6 and t h e  maximum velocity u = U, may be t rans-  
formed t o  

For t h e  upper stagnation point x = n, because g(n) = 0 and 
f ( x )  = 5.84, t h e  boundary-layer thickness becomes i n f i n i t e  and t h e  
tangent ia l  velocity zero. The quantity flowing through U6 and there-  
fo re  t h e  Re  of t he  boundary layer  U6/V, however, remain f i n i t e .  To 
introduce R e  f o r  t h e  charac te r i s t ic  length r e s u l t s  i n  no simplication 
f o r  t h e  cylinder because, i n  addition t o  the  cha'racterist ic length, t h e  
cylinder radius occurs as  an additional charac te r i s t ic  length of t h e  
system. From equation (82),  

Subst i tut ing the  numerical values and using 
ing expression f o r  R e  of t h e  boundary layer  a t  azimuth x: 

G r d  r e s u l t  i n  t h e  follow- 

R s ( X )  = 0.357 f ( X )  Grd1/4 (84) 

and f o r  R e  
(with f ( n )  = 5.84): 

of t h e  boundary layer  at the upper stagnation point 

Rg = 2.08 GX'd1I4 (85) 

where RE i s  wr i t ten  f o r  Rs(x). Although t h e  theo re t i ca l  so lu t ion  
f o r  x = n i s  no longer valid, equation (85) because of t he  small 
change of 
stagnation point (up t o  about 165O), s o  t h a t  f o r  t h e  sake of simplic- 
i t y  t h e  formula w i l l  be used i n  the  following discussion. 

f ( x )  gives the  correct  re la t ions i n  t h e  region of t h e  upper 

(b) Nusselt charac te r i s t ics .  - Figure 18 shows t h e  var ia t ion of 
t h e  nondimensional l oca l  heat-transfer coeff ic ient  according t o  equa- 
t i o n  (60) over t h e  developed semicircumference of t he  cylinder. I n  

constant valuej and a t  t h e  upper stagnation point, it drops rap id ly  t o  
zero i n  accordance with the  upstreaming w a r m  a i r  at t h a t  point.  

i s  p lo t t ed  according t o  equation (65) .  

t h e  region of t h e  lower stagnation point, it has a f i n i t e ,  p rac t i ca l ly  

L same f i g u r e ' t h e  mean heat-transfer coefficient Nud fo r  a cylinder 
I n  the  
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5. Hydrodynamic Comparison 
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(a) Between v e r t i c a l  p l a t e  and horizontal  cylinder i n  f r e e  con- 
vection. - Although t h e  boundary-layer growth f o r  a v e r t i c a l  p l a t e  and 
a horizontal  cylinder,  as already remarked (Part  111, sec. 1) and as 
seen from equations (72) and (82) ,  d i f f e r  fundamentally i n  character,  
it i s  nevertheless of i n t e r e s t  t o  compare t h e  flow condition (always 
characterized i n  what follows by Rs) a t  t h e  upper edge o f  t he  p l a t e  
and i n  the region of t h e  upper stagnation point of t h e  cylinder. 
following th ree  questions w i l l  here be considered: 

The 

1. The behavior of t he  flow a t  t h e  upper edge of t h e  p l a t e  and a t  
t h e  upper stagnation point of t he  cylinder f o r  t h e  case t h a t  t h e  height 
of t h e  p l a t e  i s  equal t o  t h e  cylinder diameter. 

2. The behavior of t h e  f l o w  at  t h e  upper edge of  t h e  p l a t e  and a t  
t h e  upper stagnation point of  t h e  cylinder f o r  t h e  case t h a t  t h e  height 
of t h e  p la te  i s  equal t o  t h e  developed semicircumference of t he  cyl-  
inder, t ha t  is, the  cha rac t e r i s t i c  lengths a re  equal. 

3. The r e l a t ion  of t h e  height of a p l a t e  whose flow condition a t  
t h e  upper edge i s  equal t o  t h a t  of t h e  upper stagnation point of a 
cylinder t o  the  diameter of t h e  cylinder. 

Before each of these questions i s  considered, t h e  r a t i o  of t h e  

Rs(Z) and a t  t h e  upper edge of t h e  p l a t e  Rg(P)  are wri t ten,  
boundary-layer Re 
inder 
with the a i d  of equations (74) and (85): 

numbers a t  t h e  upper stagnation point of t he  cyl-  

where Rs(Z) and G r d  r e f e r  t o  t he  cylinder,  and Rs(P) and G r h  
refer t o  t h e  plate. 
cance (cf .  eqs. (85) and (83) f o r  t he  cylinder,  eqs. (74)  and (73 )  f o r  
t h e  plate) :  

The coef f ic ien t  1.226 has t h e  following s i g n i f i -  

1. For equal G r  of p l a t e  and cylinder,  G r d  = Grh,  equation (86) 
gives 

R s ( Z )  = 1.226*Ra(P) (88) 

N 
dc 
M 
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t h a t  is, f o r  equal G r  of p l a t e  and cylinder, for example, f o r  a p l a t e  
of t h e  height of t h e  cylinder diameter 
conditions (with regard t o  temperatures and materials), R e  
upper stagnation point of t h e  cylinder i s  22 percent grea te r  than t h a t  
of t h e  upper edge of t he  p l a t e  ( f ig .  19).  This r e s u l t  states nothing 
about the hydrodynamic r e l a t ion  between the  two, since the  comparison 
refers t o  d i f f e ren t  charac te r i s t ic  lengths. It i s  usefu l  only f o r  t h e  
rap id  comparison of p l a t e  and cylinder f o r  t he  usual  values of G r .  
It i s  then known t h a t  for equal G r  the cylinder possesses the  more 
developed flow, so  t h a t  t h e  flow a t  the cylinder may be turbulent while 
t h a t  of t he  p l a t e  i s  s t i l l  laminar. 

h = d under otherwise equal 
a t  t h e  

2. For equal charac te r i s t ic  length h = r(/2d there  i s  obtained 
from equation (86) 

Rs(Z)/Rs(P) = 1.226 (2/1O3I4 = 0.874 (89 1 

The boundary-layer Re 
thus 13 percent smaller than t h a t  of a p l a t e  of the  height of t he  
developed semicircumference of t he  cylinder ( f ig .  19) .  T h i s  r e t a r -  
dation of the  boundary-layer development as compared with t h e  v e r t i c a l  
p l a t e  i s  due t o  the  f a c t  t h a t  t h e  boundary layer  a t  t he  lower stagnation 
point o f  the  cylinder already has a f i n i t e  thickness, whereas i n  the  
case of t he  p l a t e  t h e  thickness must increase from zero. 

at  the  upper stagnation point of a cylinder i s  

3. For equal boundary-layer Re values f o r  the  p l a t e  and cylinder,  
equation (86) gives 

Grd/Grh = 1.226’4 = 0.441 (90) 

A t  t h e  upper stagnation point of the  cylinder, there  is  therefore  the  
same flow condition as a t  t h e  upper edge of the p l a t e  i f  Gr o f  t h e  
cylinder i s  0.44 times t h a t  gf the  plate.  This permits a rapid con- 
version of t h e  flow data  f o r  t he  p la te  i n to  those f o r  t h e  cylinder and 
vice versa. If, f o r  example, it i s  known from heat- t ransfer  experiments 
on a p l a t e  t h a t  t he  departure from the laminar l a w  occurs a t  
( G r h ) k r  = 8x108, then it can be concluded without experiment from equa- 
t i o n  (90) t h a t  t h i s  must be t h e  case f o r  t he  horizontal  cylinder f o r  
(Grd)kr = 3 . 5 ~ 1 0 ~ .  I f  the  p l a t e  and cylinder a r e  under otherwise equal 
conditions, it i s  possible from equation (90) t o  derive a simple r e l a -  
t i o n  f o r  t he  height of a p l a t e  

t o  a cylinder:  

Gr1/4 

ha which is  hydrodynamically equivalent 

d3:hg3 = 0.441 hg:d = 1.311 (91) 
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I n  the  neighborhood of t he  upper stagnation point  of a horizontal  cyl-  
inder, t h e  same flow condition preva i l s  (Rg) as under otherwise equal 
conditions a t  a v e r t i c a l  p l a t e  of height 1.31 times t h a t  of t he  cy l in-  
der  diameter ( f ig .  1 9 ) .  
questions 1 and 2, t h i s  height must l i e  between t h e  cylinder diameter 
and t h e  developed semicircumference. 

A s  w a s  t o  be concluded from t h e  answers t o  

The answer t o  t h e  three  questions on t h e  flow condition a t  a 
cylinder and a t  p l a t e s  of various heights i s  shown i n  f igu re  19 (RE 
of t he  cylinder set equal t o  1). 

(I)) Hydrodynamic comparison between a v e r t i c a l  p l a t e  i n  free con- 
vection and a p l a t e  i n  a p a r a l l e l  flow. - The r e l a t ion  ( 7 6 )  between Re 
of t he  boundary-layer thickness and t h a t  of the  height of t he  p l a t e  
(charac te r i s t ic  length) Rh 
i s  strongly analogous t o  the  corresponding r e l a t i o n  (92) between 
of t h e  boundary-layer thickness 
thickness 6") and the  cha rac t e r i s t i c  length Rx f o r  a p l a t e  i n  a 
stream pa ra l l e l  t o  i t s  plane (Blasius solut ion of t he  boundary-layer 
equations) : 

f o r  the  v e r t i c a l  p l a t e  i n  f r e e  convection 

Rg*(referred t o  the  displacement 
Re 

Rg = 2 - 2 9  Rhl/' (76) 11 Rg* = 1 . 7 3  RX1/' (92) 

I n  sp i t e  of t h e  already mentioned e n t i r e l y  d i f f e ren t  r a t e  of growth of  
t he  boundary-layer thickness,  i n  the  case of t he  p a r a l l e l  f l o w  as the  
square root of the  distance from the  incident edge and i n  the  case of 
t h e  f r e e  convection as the  four th  root  of dis tance from t h e  lower edge, 
t h e  development of t h e  Reynolds number of t h e  boundary-layer thickness 
as a function of t he  Reynolds number of t h e  cha rac t e r i s t i c  length i n  
the  case o f  these two very d i f fe ren t  types of flow follows the  same 
exponential l a w  and with approximately equal magnitude. 

6. Thermal Comparison between Ver t ica l  P l a t e  and Horizontal Cylinder 

(a) Mean heat- t ransfer  coef f ic ien ts .  - For equal G r  of p l a t e  and 
cylinder (GrH = G r d ) ,  there  i s  obtained from equations (81) and (65) t he  
following r a t i o  of t he  nondimensional hea t - t ransfer  coef f ic ien ts  of t he  
horizontal  cylinder mud and of t he  v e r t i c a l  p l a t e  NuH 

Under otherwise equal conditions, therefore ,  t he  mean hea t - t ransfer  
coefficient of a cylinder i s  only 78 percent of t h a t  of a p l a t e  o f  the  

N 
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height of t h e  cylinder diameter (fig. 18). I n  agreement with t h i s ,  t he  
comparison given by M. Jakob and W. Linke ( re f .  19) of convection tes ts  
on v e r t i c a l  p l a t e s  and horizontal  cylinders i n  a s ingle  Nu-Gr diagram 
(with H and d denoting the  length dimension) gives a lower posi t ion 
of t h e  cylinder t e s t s .  The modified determination of t h e  c r i t i c a l  num- 
ber,  which follows from these results, w i l l  be discussed later (Part  IV, 
see. 5) .  

For equal mean heat-transfer coeff ic ient  of p l a t e  and cylinder 

under otherwise equal conditions, there is  obtained from equations (81) 
and (65) 

0.479 = 0.372 d-1/4 H/d = 2.76 (94 1 
The mean heat- t ransfer  coeff ic ient  of a cylinder i s  therefore,  under 
otherwise equal conditions, equal t o  t h a t  of a p l a t e  of height 2.76 
times t h a t  of t h e  cylinder diameter. On account of t h e  s m a l l  decrease 
of t he  l o c a l  heat- t ransfer  coeff ic ient  a t  la rge  p l a t e  heights, t h i s  
f ac to r  of  2.76 i s  not very sharply determined. 
found i t ,possible ,  without considering t h e  previously given theo re t i ca l  
solut ion f o r  the  cylinder, t o  represent the  mean heat- t ransfer  coef- 
f i c i e n t s  f o r  cylinders from t e s t s  by Koch by t h e  formulas f o r  the ver- 
t i c a l  p l a t e  i f  H i s  replaced by 2d (instead of t heo re t i ca l ly  by 
2.76d). As a matter of fac t ,  t h e  
cylinder l i e  only 8.3 percent above the values given by the  theory 
according t o  equation ( 6 5 ) ,  as can be seen by replacing H by 2d i n  
equation (81) . 

Thus Jodlbauer (ref. 29) 

values thus determined f o r  t he  

(b) Total  heat t ransfer .  - The t o t a l  heat t r a n s f e r  Q(Z) of a 
cylinder of diameter d along the en t i re  circumference and the  t o t a l  
heat t r a n s f e r  
under otherwise equal conditions, a r e  i n  the  r a t i o  

Q(P) along t h e  two sides of a p l a t e  of the  height H, 

and f rom equations (81) and (65) ,  

where t h e  significance of t h e  f ac to r  1 .221  i s  as follows (cf .  eqs. (Sl), 
( 8 0 ) ,  (65), and (59)): 
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A comparison of t h i s  f ac to r  1 .221  with the  fac tor  1.226 occurring i n  
t h e  ratio o f  t h e  boundary-layer R e  of cylinder and p l a t e  (eq. (86))  
according t o  equation (87)  shows t h a t  both are ident ica l ,  s ince accord- 
ing t o  the theo re t i ca l  solution, t h e  following r e l a t ion  holds as an 
immediate consequence of t h e  va l id i ty  of t h e  heat-transfer equation: 

3lTE = f ( X )  (97 

The s m a l l  difference of l/Z percent i s  explained by the  f a c t  t h a t  (as 
mentioned i n  connection with eq. (64 ) )  E w a s  computed not according 
t o  equation ( 9 7 )  but  was.obtained by planimetering. 

For equal G r d  and GrE values i n  equations (86) and ( 9 5 ) ,  t h e  
following is  thus obtained: 

t h a t  is ,  t h e  t o t a l  heat t r ans fe r  of a horizontal  cylinder and t h a t  of 
t h e  two sides of a ve r t i ca l  p l a t e  under otherwise equal conditions a r e  
i n  t h e  same r a t i o  as t h e  boundary-layer Re values a t  the  upper s tag-  
nat ion point of the  cylinder and a t  t h e  upper edge of t h e  p la te ,  
respect i ve l y  . 

. 

. 
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On the bas i s  of r e l a t i o n  (98) it i s  now possible, without fu r the r  
computation, t o  answer the  three  questions on the  t o t a l  heat t r a n s f e r  
of a cylinder and p l a t e s  of d i f f e ren t  height, analogous t o  the  questions 
re fer r ing  t o  t h e  hydrodynamic comparison (see f i g .  19; t he  heat t r a n s f e r  
of t he  cylinder has been s e t  equal t o  1). 

Corresponding t o  equation ( 8 8 ) ,  

Q(Z)  = 1 .22  Q(P) (99 

The t o t a l  heat t r ans fe r  of a cylinder is  thus 22 percent grea te r  than 
t h a t  for t h e  two s ides  of a p l a t e  of a height equal t o  t he  cylinder 
diameter under otherwise equal conditions ( f ig .  18). 

Corresponding t o  equation ( 8 9 ) ,  

Q(Z) = 0.87 Q(P) ( m o  
The t o t a l  heat t r ans fe r  of  a cylinder i s  13 percent smaller than t h a t  
of t he  two s ides  of a p l a t e  of height equal t o  t h e  developed semi- 
circumference of t he  cylinder (equal cha rac t e r i s t i c  length) under other- 
wise equal conditions. 
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Corresponding t o  equation (91) f o r  

there  is  obtained the  height of a plate  
a cylinder:  

B; thermally equivalent t o  

w Hg : d = 1.31 (101) 
w 
rp 
c\5 The t o t a l  heat t ransfer  of a cylinder under otherwise equal conditions 

is  therefore  as great  as f o r  t he  two sides of a ve r t i ca l  p l a t e  of 
height 1 . 3 1 t i m e s  t h a t  of t h e  cylinder diameter. I n  summary it may 
therefore  be s t a t ed  t h a t  a horizontal  cylinder and a ve r t i ca l  p l a t e ,  
which t r ans fe r s  heat on both i t s  sides, of  a height equal 1.31times 
the  cylinder diameter are equivalent both thermally (with reference t o  
the  t o t a l  heat t r ans fe r )  and hydrodynamically (with reference t o  t h e  
boundary-layer development a t  t h e  upper stagnation point and a t  t h e  
upper edge, respect ively) .  

IV. T€E OCCURRENCE OF TURI31TL;ENCE IN FREZ FLOW ABOUT A HORIZONTAL 

c CYLLNDER AND ALONG A VERTICAL PLATE 

1. Introductory Observations 

For t h e  determination of t h e  t r ans i t i on  from laminar t o  turbulent  
flow i n  t h e  case of f r e e  convection, t e s t s  were car r ied  out on a v e r t i -  
c a l  p l a t e  and a horizontal  cylinder of su f f i c i en t  s ize .  
reasons underlay the  investigation. I n  t h e  f i r s t  place, it w a s  desired 
t o  determine t h e  upper l i m i t  of t h e  val idi ty  of t he  laminar boundary- 
layer  theor ies  f o r  p l a t e  and cylinder and therefore  the  upper l i m i t  of 
app l i cab i l i t y  of t he  heat-transfer formulas developed from these theo- 
r ies f o r  p rac t i ca l  application. 
t heo re t i ca l  nature. The numerous turbulence investigations,  both ex- 
perimental and theore t ica l ,  undertaken i n  recent decades have been 
concerned a lmost  exclusively e i the r  with t h e  f l o w  between two p a r a l l e l  
walls with l i n e a r  velocity d is t r ibu t ion  (Couette f l o w )  or with t h e  flow 
i n  pipes, channels, about ro ta t ing  cylinders, along plates ,  cylinders,  
o r  other  res is tance bodies which have in  common a velocity p r o f i l e  which 
rises uniformly from t h e  value zero at t h e  w a l l  up t o  a maximum value. 
Differ ing e s sen t i a l ly  from these prof i les  a re  evidently veloci ty  pro- 
f i l e s  for which t h e  velocity rises from t h e  value zero a t  t h e  w a l l  t o  
a maximum value and then, a f t e r  passing through a point of in f lec t ion ,  

p ro f i l e s  are typ ica l  i n  the  case of heat t r ans fe r  by f r e e  convection. 

Two main 

The second reason was of a more 

b again drops t o  t he  value zero a t  a large distance f romthe  w a l l .  Such 

0 
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Some fur ther  observations on the  s e t t i n g  up of turbulence i n  f r e e  con- 
vection w i l l  be made later i n  connection with t h e  discussion of r e s u l t s  
(see. 5).  

2. Test Procedure 

F o r t h e  investigation, t he  schl ieren method developed by E. Schmidt 
w a s  applied, which as an op t i ca l  method provides t h e  poss ib i l i t y  of  an 
instantaneous view of the  e n t i r e  f i e l d ,  and i s  therefore  of advantage 
f o r  determining the  c r i t i c a l  number. 

The schl ieren method has been described i n  d e t a i l  by E. Schmidt 
( r e f .  22) so t h a t  only t h e  e s sen t i a l  points  w i l l  be given here. 
based on t h e  def lect ion suffered by a l i g h t  ray i n  passing through a 
f i e l d  with density s t r a t i f i c a t i o n  (i.e.,  var ia t ion of t he  index of 
refract ion)  normal t o  i t s  d i rec t ion  of propagation toward t h e  colder 
layer .  In t h e  t e s t ,  a p a r a l l e l  l i g h t  beam i s  allowed t o  pass tangen- 
t i a l l y  along t h e  surface of t h e  heated body. The rays i n  the  neighbor- 
hood of the w a l l ,  because of t h e  maximum temperature drop at t h a t  place, 
are most strongly def lected from t h e i r  i n i t i a l  direct ion;  those f a r t h e r  
away from t h e  w a l l  are less deflected, while those rays which are out- 
s ide  the  temperature f i e l d  undergo no def lect ion.  
i s  s e t  up a t  a su f f i c i en t  distance behind t h e  heated body, t h e  rays 
near t he  w a l l  appear t he  f a r t h e s t  from the  w a l l .  
i s  obtained: t h e  heated body throws a completely dark shadow which, as 
comparedwith t h a t  of the  cold body, i s  increased by the  thickness of 
t h e  temperature boundary layer .  
" in t e r io r  caust ic  curve" adjacent t o  which i s  formed a medium-bright 
region (rays which have passed through the  temperature f i e l d ) ,  which i n  
tu rn  i s  bounded toward the  outside by a second "external  caust ic  curve" 
originating from t h e  tangent ia l  rays i n  the  neighbo'l-hood of t h e  heated 
surface. S t i l l  f a r t h e r  toward the  outside i s  the  uniformly br ight  f i e l d  
of t h e  undisturbed i l lumination. 

It is  

On a screen which 

The following p i c tu re  

This shadow i s  bounded by a f i rs t  

For an accurate evaluation, t he  method i s  su i tab le  only f o r  bodies 
having one of i t s  length dimensions (two-dimensional problem), so t h a t  
t he  e f fec t  of t h e  temperature f i e l d s  a t  t h e  ends on the  path of t h e  
l i g h t  ray i s  s m a l l  compared with t h e  def lec t ion  undergone i n  passing 
through the distance along the  length. On t h e  other hand, t h e  length 
should be chosen only large enough so  t h a t  t h e  l i g h t  ray  a t  t h e  end of 
t he  body s t i l l  i s  approximately a t  t h e  same distance from t h e  w a l l  a s  
at t h e  i n i t i a l  point of t h e  body. 

. 
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3. T e s t  Setup and Procedure36 

(a) P la te .  - The p l a t e  w a s  100 by 100 centimeters and 1.0 cent i -  
meter thick.  It consisted of two zinc sheet p l a t e s  1 m i l l i m e t e r  t h i ck  
which by interposing a frame o f  8 - m i l l i m e t e r  U-brass were soldered onto 
each other. In  the  interspace there  was placed a heating co i l ,  insu- 
l a t e d  by asbestos boards, which consisted of 36 meters of chrome-nickel 
w i r e  of 1-millimeter diameter with a t o t a l  res is tance of 51 ohms. In  
a i r  of room temperature, t he  p l a t e  could be kept a t  looo C surface t e m -  
perature with 5.6 amperes. The p l a t e  was suspended on two b icyc le  
wheel spokes which were attached t o  t h e  upper s t r i p  of the  frame. 
Through the  la t te r  the  current w a s  also conducted t o  t h e  i n t e r i o r .  For 
measuring t h e  surface temperature a silver-constantan thermocouple w a s  
used which w a s  f l a t l y  soldered on about 5 centimeters from t h e  upper 
r i m  of t h e  p l a t e  and t h e  wires of which extended a few more centimeters 
qui te  close t o  t he  plate .  This simple temperature measurement could be 
applied because extreme accuracy w a s  not required. 
t he  p l a t e  suspended with t h e  current-supplying wires, and t h e  thermo- 
couple and two pendulums each with t w o  spheres which served t o  determine 
the  v e r t i c a l  and made possible the  mutual comparison of t he  d i f f e ren t  
photographs. 

Figure 20 shows 

(b) Cylinder. - The cylinder consisted of  two layers  of 0.7- 
mill imeter-thick zinc sheet which was  ro l l ed  over two bicycle  wheel 
r i m s  and soldered t o  t h e i r  upper sheathing s t r i p .  
there  w a s  placed t h e  heating c o i l  insulated by asbestos board, t h e  c o i l  
being of  54 meters of chrome-nickel wire of 1-millimeter diameter with 
a t o t a l  res is tance of 77 ohms, which brought t he  cylinder i n  air  o f  
room temperature t o  looo C surface temperature with a current of 4.1 
amperes. The cylinder was suspended on two bicycle  wheel spokes. 
current leads and thermocouple w e r e  similarly located on t h e  upper 
sheathing s t r i p .  
and i t s  mean outer diameter 58.45 centimeters ( f luctuat ing between 
58.35 i n  t h e  horizontal  and 58.75 over t he  soldered seam). 
surfaces were closed off with asbestos board. Figure 2 1  shows a view 
with t h e  suspension, current leads, and t h e  two pendulums. 

Between t h e  sheets 

The 

The mean length of the cylinder w a s  100.2 centimeters, 

The f r o n t a l  

(c )  Setup. - Since it i s  very d i f f i c u l t  t o  produce a p a r a l l e l  
bundle of rays of t he  diameter of t h e  body here employed by means of 
lenses, such a beam w a s  replaced by the l i g h t  from a s t rongly screened 
(as a r u l e  of 3-mm aperture) a r c  lamp 32 meters from the  heated body. 
The distance between the  body and t h e  screen w a s  8 meters. The appa- 
r a tus  w a s  set up on the  la rges t  f loor ,  of 42-meter length, of t he  

36Acknowledgment i s  made t o  H e r r  D r .  R. Weise and Dr. H. Kurzweg, 
Leipzig. 
G. Hentsch, Leipzig. 

For t he  t e s t  setup, acknowledgment i s  made t o  Master Mechanic 
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Ins t i t u t e .  Because of the  window i n  one of the  w a l l s  and the  connec- 
t i o n  t o  t h e  s t a i r case  ha l l s ,  it w a s  not possible  t o  exclude e n t i r e l y  
currents of t h e  room a i r  so t h a t  only a t  high temperature differences 
(above 50' C )  could usefu l  schl ieren photographs be obtained. The 
exis t ing dissymmetry of t h e  c r i t i c a l  po in ts  on t h e  two s ides  of t h e  
bodies, both for  the  p l a t e  and cylinder ( see  t ab le  V )  w a s  due t o  a 
un i l a t e ra l  convection flow from the  window w a l l .  The horizontal  

. 

adjustment o f  t h e  t e s t  bodies w a s  e f fec ted  by means of a water balance; 
t he  adjustment p a r a l l e l  t o  t he  l i g h t  cone, by measuring the  shadow of * 
t h e  cold body. K) 

N 

M 

(d) P h ~ t o g r a p h y ~ ~ .  - The schl ieren p ic tures  were obtained by two 
methods. I n  one method the  shadow pic tures  were taken on the  screen 
by means of a lens  and camera (13x18 cm, Zeiss-Tessar 1:2.7). 
of highly sens i t i ve  p l a t e s  (Agfa-Superpan 16/10 D I N ) ,  exposure times 
of 5 t o  25 seconds were required on account of  t h e  low brightness,  be- 
cause of t he  strong screening and la rge  dis tance from the  a r c  lamp. 
For determining a time mean value of t h e  f luc tue t ing  c r i t i c a l  points ,  
these  time p ic tures  were, however, pa r t i cu la r ly  wel l  sui ted.  The 
photograph w a s  taken e i the r  somewhat from the  s ide  (p l a t e )  or, i n  order 
t o  avoid d is tor t ions ,  exactly cen t r a l  (pa r t ly  i n  the  case of t he  cyl-  
inder ) ;  t h e  camera was s e t  up i n  the  shadow o f  t he  cylinder so t h a t  the 
legs  of t h e  t r i pod  t h r e w  an addi t iona l  shadow ( f i g .  23). 
method consisted of  a d i r ec t  i l lumination of one o r  severa l  photoplates 
simultaneously (Agfa-Isochron 13/10 D I N ,  10x15 cm) , which were brought 
t o  the  posi t ion of the  screen. The g rea t e r  brightness obtained i n  t h i s  
way made possible  instantaneous photographs (through l i g h t  f lashes  from 
the  a r c  lamp), which i n  connection with t h e i r  g rea te r  sca le  provided 
a view i n  instantaneous d e t a i l  of t he  t r a n s i t i o n  from laminar t o  turbu- 
l e n t  f l o w .  ' 

I n  s p i t e  

The second 

4. Evaluation of t he  Schl ieren Pictures  

Figures 22 and 23 show time exposures of t he  p l a t e  and cyl inder  
taken by means of lens  and camera. I n  t h e  center the  magnified shadow 
of the  body by the  thickness of t h e  temperhture boundary layer ,  t h e  
"inner caust ic  curve" surrounding it, and fu r the r  toward the  outs ide 
t h e  "outer caust ic  curve" a r i s ing  from t h e  rays near t he  w a l l .  The 
dissymmetry of the  lower edge of the p l a t e  i s  due t o  t h e  disturbances 
of t he  room air  t h a t  were mentioned previously. 
p l a t e  i s  i m e d i a t e l y  below the  frame of t h e  p ic ture  i n  the  "necking" 
of the  cent ra l  shadow. I n  the  upper stagnation point of t he  cyl inder  
are seen the  shadows of t he  suspension wi.res, current leads,  and thermo- 
couple wires; below are seen the  th ree  t r i pod  legs  f o r  the  cen t r a l  

The upper edge of t he  

37For valuable advice i n  connection with the  photography, ac- 
knowledgment i s  made t o  Herr D r .  A. Naumann, Leipzig. 
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.I photograph. Figure 24 shows f o r  simultaneously obtained instantaneous 
photographs of t h e  left38 s ide of t h e  p l a t e  ( i n  the  case of d i r ec t  
i l lumination about 25 cm from t h e  lower edge s t a r t i n g  with s m a l l  i n t e r -  
spaces of about 1 cm), a region of about 50-centimeter height: a t  24(a) 
and t h e  lower p a r t  of 24(b), laminar; in t he  upper pa r t  of ,  25(b), a 
t r ans i t i on ;  24(c) and 24(d), turbulent.  Figure 25 shows three simul- 
taneously taken instantaneous pictures  o f  t h e  cylinder with d i r e c t  
i l lumination: 25(a) a t  t h e  lower stagnation point,  laminar; 25(b) a t  

w bl t h e  l e f t  azimuth of 120°, turbulent;  25(c) a t  the  upper stagnation 
R point,  warm air  stream. 

A s  shown by f igures  22 t o  25, t he  outer  caust ic  curve of t h e  rays 
near the  w a l l  is  pa r t i cu la r ly  su i tab le  f o r  determining t h e  c r i t i c a l  
location. If t h i s  l i n e  i s  broken up, then turbulence ce r t a in ly  exists;  

through ex terna l  disturbances. 
caus t ic  curve i s  sharp and i s  completely stationary; i n  t h e  turbulent  
(upper) region it i s  to rn  in to  several  pieces and i n  disordered motion. 
I n  t h e  t i m e  photographs, t h i s  means complete washing out. The c r i t i c a l  
pos i t ion  i tself  f luc tua tes  uswards and downwards, a t  one t i m e  very 
rap id ly  and a t  another slowly. 
t he re  w a s  taken as t h e  "time mean value of t he  c r i t i c a l  position'' t h e  
end of t h e  region i n  which t h e  existence of an outer caust ic  curve 
through differences i n  brightness could s t i l l  be determined outwards 
and inwards (arrows) .  
r i s e s  as a whole outwards as broad, uniformly br ight  s t r i p s .  Comparison 
of t h e  photographic observation thus determined with t h e  mean c r i t i c a l  
pos i t ion  estimated from naked eye observation over  a period of time 
showed good agreement and therefore  the j u s t i f i c a t i o n  of t h i s  procedure. 

pc 
I whereas t h e  flow regions f a r the r  f romthe  w a l l  a re  more e a s i l y  disrupted 

In  the  laminar ( lower)  region, t h e  

. 
For evaluating the  t i m e  photographs 

Above the  c r i t i c a l  posi t ion the  heated layer  

The c r i t i c a l  posi t ions obtained by t h i s  procedure are col lected 
together with t h e  remaining t e s t  values i n  t ab le  V. Each c r i t i c a l  point  
i s  t h e  mean value of four determinations two of which were made with 
d i r e c t  illumination, and two with a magnified project ion picture .  The 
G r  values a re  formed i n  the  case of the cylinder with t h e  diameter, i n  
t h e  case of t h e  p l a t e  with the  c r i t i c a l  height as cha rac t e r i s t i c  length. 
By means of equation (74) f o r  t h e  p la te  and, with f(xkr) ,  equation (84) 
f o r  t h e  cylinder, t h e  c r i t i c a l  Reynolds numbers of t he  boundary appear- 
ing i n  t h e  last  column were computed. Their mean values of 303 f o r  the  
p l a t e  and 285 fo r  t h e  cylinder a re  weighted according t o  t h e  d i f f e ren t  
i l l imina t ion  t i m e s  of t h e  individual  pictures.  From t h e  mean value 
R6kr = 303 the  value l.0x109 i s  obtained f o r  t h e  mean c r i t i c a l  G r  

f o r  t h e  p la te .  

380n the  r i g h t  of t he  figure;  the p ic tures  with d i r ec t  i l lumination 
are l a t e r a l l y  interchanged. 
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5. Discussion of Results 

The mean value of 303 f o r  t he  c r i t i c a l  Reynolds number of t h e  
boundary l a t e r  f o r  t he  p l a t e  and 285 f o r  t h e  cylinder can be regarded 
i n  agreement, i n  view of t h e  accuracy of determination of a c r i t i c a l  
number in general  and the  small number of t he  schl ieren pictures  and 
disturbances of t h e  room air  i n  par t icu lar .  This i s  understandable 
from the f a c t  t h a t  t he  velocity p ro f i l e s  of both f l o w  processes a t  any 

., 1 distance f r o m  the  lower edge o r  lower stagnation point a r e  a f f ine  t o  :. each other. The development along the  i n i t i a l  s t r e t ch  occms i n  a ?, ? 

4: 

C '  

different  manner, but t h i s  should have only a higher-order e f f ec t .  A s  
w a s  t o  be expected, t h e  c r i t i c a l  number of t h e  f r e e  p r o f i l e  R 300 

'kr 
l i e s  considerably below t h e  c r i t i c a l  number of  t h e  p r o f i l e  i n  the  case 
of  forced f low (p l a t e ) ,  which, re fer red  t o  t h e  displacement thickness 
o f  Burgers and Hansen, amounts t o  950 i n  t h e  wind tunnel, and accord- 
ing t o  more recent t e s t s  i n  t h e  Gattingen water tunnel  f o r  very quie t  
approach, it amounts t o  about 1400. 
whether a t heo re t i ca l  s t a b i l i t y  invest igat ion f o r  t he  free prof i le ,  t he  
analog of t h e  familiar computations i n  t h e  forced-flow case, would have 
t o  be conducted i n  order t o  give t h i s  increased i n s t a b i l i t y .  

It would be of i n t e r e s t  t o  know 

With t h e  determination of t he  c r i t i c a l  number f o r  t he  ve r t i ca l  
p l a t e  and the  horizontal  cylinder and reduction t o  t h e  c r i t i c a l  Reynolds 
number of t h e  boundary layer,  t h e  data  of other invest igators  w i l l  be 
compared with regard t o  t h e  t r a n s i t i o n  from laminar t o  turbulent  flow. 

E. Schmidt ( r e f .  26) notes t h a t  according t o  tests i n  air ,  t h e  flow 
a t  about looo C p l a t e  temperature remains laminar up t o  a p l a t e  depth 
of  about 50 centimeters, corresponding t o  a c r i t i c a l  
good agreement with the  values obtained herein. 

Gr of 8X108, i n  

M. Jakob and W. Linke ( re f .  19 )  determined f rom a combination of 
t he  measurements of various invest igators  on v e r t i c a l  p la tes ,  v e r t i c a l  
and horizonta cylinders, block, and sphere, as the t r a n s i t i o n  point 

( G r . P r ) k r  3.OxlO7, t h a t  is ,  f o r  diatomic gases The 
difference as compared with the  present determinations should i n  large 
pa r t  be ascribed t o  t h e  f a c t  t h a t  hydrodynamically unequivalent bodies 
(Reynolds number of  t h e  boundary, see Part  111, sec. 5a, eq. (88)) were 
here t reated together. If account i s  taken only of t h e  tests on t h e  
ver t ica l  p l a t e s  and v e r t i c a l  cylinders (Par t  111, sec. 6a), which f o r  
la rge  cylinder diameters and large G r  ( t h i n  boundary layer )  a r e  a t  
l e a s t  approximately equivalent hydrodynamically, t he re  i s  obtained a 
c r i t i c a l  G r  o f  4x108, which i s  therefore  qui te  c lose t o  the  present 
determinations. 

f rom the Gr l  7 t o  t h e  Gr1/3 l a w ,  the  c r i t i c a l  number of 
Grkr  a 4.Ox1O7. 

. 



NACA TM 1366 51 

E. G r i f f i t h  and A. H. D a v i s  (ref. 17)  investigated the  loca l  
d i s t r ibu t ion  of t h e  heat t r ans fe r  on a 270-centimeter-high w a l l ,  which 
consisted of 25 individual elements. They obtained a minimum value of 
t h e  heat t r ans fe r  a t  about 38-centimeter height ( t h e i r  own determina- 
t i o n )  which they regarded as the  t rans i t ion  from the  laminar t o  t h e  
turbulent  condition. This agrees i n  order of magnitude with the  pres- 
ent  values (columns between the individual elements), where it should be 
fur ther  c l a r i f i e d  which point of t h e i r  curve is t o  be regarded as the  
" c r i t i c a l  point" proper. 

6. T r a v e l  of the  C r i t i c a l  Azimuth fo r  t he  Horizontal Cylinder 

On t h e  bas i s  of  the  given theore t ica l  solut ion of t h e  flow about 
t h e  horizontal  cylinder and t h e  point of t r ans i t i on  experimentally 
determined f o r  a 
variable G r  can be computed i f  it i s  assumed t h a t  t he  turbulence 
always occurs i f  t he  boundary-layer Re has the  same value of 285. 
This reasonable assumption w i l l  correspond a l l  the  more t o  f a c t  since,  
as has just  been shown, even f o r  the ve r t i ca l  p l a t e  with a qui te  d i f f e r -  

Gr = 109, t he  t r ave l  of  t he  c r i t i c a l  azimuth f o r  a 

ent  boundary-layer 
c r i t i c a l  number of 

From equation 

development, t h e  turbulence i s  s e t  up a t  the  same 
t h e  boundary layer .  

(84), the  following r e l a t ion  i s  obtained, with t h e  
= 285: 

R8kr 

which is  evaluated i n  t ab le  V I  and plot ted on semilogarithmic gr id  i n  - 
f igure  26. 
t h e  s tar t  of turbulence occurs fo r  an azimuth of  about 120°. 
l y  laminar f low about t h e  cylinder, f o r  extension of  t he  theory up t o  
t h e  upper stagnation point, occurs f o r  
reaches t h e  equator f o r  

I n  accordance with the  basic considerations, f o r  a G r  = lo9 
Complete- 

Gr< 3x108. The t r a n s i t i o n  point 
G r  = 3x10'. 

For greater  c l a r i t y ,  t h e  G r  w i l l  be expressed f o r  cylinders of 
varying diameters, which a re  i n  a i r  of 20' C with a surface temperature 
of 100' C. From the  def in i t ion  of Gr ,  f o r  8 = 80 ('e), 
P = 1/293 ('C-l), V( lOOo)  = 0.231 (cm2/sec), t he  following r e l a t i o n  
obtains : 

which with t h e  a i d  of t he  c r i t i c a l  
similarly been evaluated i n  t ab le  V I  and p lo t t ed  i n  f igure  27. 
sponding t o  the  basic  considerations, the  c r i t i c a l  azimuth f o r  t h e  

Grd values from equation (102) has 
Corre- 
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/ 
relations considered for a cylinder of 60-centimeter diameter is 120'. 
For cylinders below 41 centimeters, no turbulence occurs at all. The 
transition point reaches the equator for a cylinder of 84-centimeter 
diameter . < K O 7  L'Y* 

For practical applications, the result is thus obtained that for 
heated horizontal conducting pipes up to 40 centimeters in diameter and 
surface temperatures of 100' C in room-temperature air the previously 
given formulas are valid for the heat transfer in air (in particular, 

formulation of figure 26 is naturally to be applied. The formulas can, 
in the absence of other suitable data, still be applied up diameters of 
60 centimeters, because two thirds of the cylinder periphery is still 
in laminar flow. There should not likewise be much of a change for 
considerably higher surface temperatures (200' or 300' C) . 

N 

8 eqs. (60) and (65) ) . For accurate computation, the nondimensional M 

The experimental determination of the variation of the critical 

For temperature difference up to about 50' C 
azimuth f o r  the cylinder with the Gr, through varying the temperature, 
remained unsuccessful. 
the outer caustic curve is still not sufficiently far from the central 
shadow in order to be perceived separately from the latter, as is re- 
quired for determining the critical number. For this, the distance 
between the cylinder and the screen would have to be considerably in- 
creased, which is not possible on account of space requirements. Going . 
beyond the usually employed temperature differences of 80° C, because 
of the strong increase in \I, no longer gives an increase in Gr and 
moreover gives increasingly stronger deviations from the assumption of 
moderate temperature differences, which is at the basis of the theory. 
The travel of the critical azimuth with Gr is best determined by 
varying the cylinder diameter, as follows from figure 27. 

v. SUMMARY 

From the numerous tests already available on the heat transfer 
from horizontal pipes and wires in diatomic gases, the dependence of 
the nondimensional heat-transfer number Nu on the Grashof number Gr 
and the temperature coefficient Te, which enters as a further non- 
dimensional factor at large temperature differences, is determined. The 
effect of Te on the heat transfer is quantitatively determined for the 
first time. It is particularly large in the region of small Gr 
to lo), where on the average a decrease in 
crease of Te from Te = 0 to Te = 1 is obtained. The experimentally 
found dependence of Nu on Gr, F'r, and Te can then obtain a qualita- 
tive theoretical explanation. 

Nu by 22 percent for in- 
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For t h e  region of G r  (about lo4 t o  3X108) i n  which t h e  heat t rans-  
f e r  i s  l imited t o  a t h i n  ( i n  comparison with the  cylinder diameter), 
heated layer  with laminar flow, the  velocity and temperature f i e l d s  and 
the  heat t ransfer  are quant i ta t ively computed from t h e  boundary-layer 
d i f f e r e n t i a l  equations without any additional empirical  values; these 
computations are found i n  good agreement with t h e  avai lable  measure- 
ments. In  par t icu lar ,  t he  one-fourth PO er  l a w  of t h e  heat t r ans fe r  i s  
obtained theore t ica l ly  as Nu = 0.37 Gr1Y4. 

The flow and heat- t ransfer  re la t ions thus computed (Re of t h e  
boundary-layer flow, var ia t ion of t h e  loca l  heat- t ransfer  coef f ic ien t  
along t h e  cylinder periphery, mean heat-transfer coeff ic ient ,  and t o t a l  
heat given off  by t h e  cylinder) are compared with the  already known 
re l a t ions  f o r  t he  ve r t i ca l  p la te .  Among other results, t h e  depth of a 
v e r t i c a l  p l a t e  i s  determined which for  free convection shows equal f l o w  
condition and equal t o t a l  heat t ransfer  at  a given cylinder, so t h a t  a 
simple computation i s  made possible f o r  converting t h e  heat- t ransfer  
data  f o r  a p l a t e  t o  those of a cylinder and conversely. 

I n  order t o  know the  upper l i m i t  of va l id i ty  of t he  laminar-flow . and heat- t ransfer  computations and the laminar heat- t ransfer  formulas, 
t h e  s t a r t  of turbulence w a s  determined by schl ieren photographs on a 
v e r t i c a l  p l a t e  and a horizontal  cylinder of su f f i c i en t  s i z e ,  This 
occurs f o r  d i f f e ren t  values of 
and G r  = 3 . 5 1 ~ 1 0 ~  for t h e  cylinder, but f o r  equal R e  of t he  boundary- 
layer  flow, namely, f o r  R e  - 300. I n  t h i s  way, t h e  c r i t i c a l  Reynolds 
number of t h e  velocity p ro f i l e  of t h e  free f l o w  w a s  determined f o r  the  
f i r s t  t i m e ;  as compared with other velocity prof i les ,  t h i s  p r o f i l e  i s  
narked by the  presence of a maximum value and a point of in f lec t ion .  
Likewise computed with the  Grashof number w a s  t h e  ' c r i t i c a l  azimuth' on 
the  cylinder a t  which t h e  laminar flow passes in to  t h e  turbulent  flow. 

* 
G r ,  namely, G r  = l.0X109 f o r  t h e  p l a t e  
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750 

35 

Height, 
300 cm 

10,000: 300 

0.097-0.751 

8.4-45.6 

25.6 

2 3 

TABLE I. - SUMMARY OF TESTS BY DIFFERENT INVESTIGATORS 

I Investigator Kennelly, 
Wright, 
Bylevelt 

Petavel Wamsler Koch Ayrton, 
Kilgour 

3 F’t w i r e s  3 Cu wires 1 Pt w i r f  ?ipes: 
5 wrought 
?e; 6 Cu; 
L cas t  Fe 

4 s t e e l  
pipes 

Substance 
Ta, Pt, Fe 
m, ng, N i  

0.0510 0.1000 
1.4- 
10.05 

0.0031- 
0.0356 

0.01143- 
0.06907 

O.ll06 2.05-8.9 
5.9 
5.9 

--- 
I cm 

Temperature of LLT 27.6-188.6 40-300 

15-180 200-1000 36-243 13-174.4 Excess tempera- 

Room tempera- 
ture, tp, OC 

14.2-22 10.5-15. S 20 (approx: 16  10- 29 

A i r  I Air Air Air 

750 120-1900 0.12- 
160 a t m  

115 15.7-722.3 

32.5 50 (approx: 45 300 138-198 Cylinder length 

Surrounding Ver t ica l  
tank: 
length, 
152 cm, 
height, 
660 cm 

Lori zontal 
lipe: 
.ength, 
5 cm; 
.iam. 
1.06 cm 

Lse,  7.35 
;q meters; 
ieight , 
!lo cm 

Height, 
400 cm 

Iorizontal 
)ipe: 
Length, 
52.5 cm; 
t iam.  
5-08 cm 

1640: 143 8,200: 9640 18.6 102: 24 286: 40 
height t o  
cylinder d i m .  

Te number 0.30-1.00 0.052-0.61 0.13-0.82 0.69-3.46 0.045- 
0.606 

None 7.6-16.8 25.2 Irregular  None Relative 
decrease of 
Nu f o r  
ATe = 1, 
percent 

of Nu for  
ATe = 1, 

13.2 25.2 

4 5 6 7 1 ’  
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TABLE V. - EVALUATION OF SCHLIEREN PHOTOGRAPHS FOR OCCURRENCE 

Right Middle 

76.0 
53.8 
66.2 
60.9 

55.9 66.0 
47.3 50.6 . 
60.8 63.5 
47.3 54.1 

X k r  

G r d  

d, c m  

180' 165' 1150' 120' 

3.52 4.30 5.42 1.07 
~108 ~ 1 0 8  ~ 1 0 8  ~ 1 0 9  
41.3 44.1 47.7 59.9 

9F T U R B W C E  

(a) Vertical  p la te .  8 748 16.5 

Number 

24 
25 
26 
27 

(b) Horizontal cylinder. Diameter, d, 58.45 centimeters. 
- 

b, 
mm 

- 
7 60 
760 
760 
760 
752 
752 
- 

tw, I C r i t i c a l  azimuth, xkr 
Middle 

Grh.kr R8kr Number 

6 
10 
11 
12 
17 
18 

124.5' 
117  .9' 
118.5' 
122.1' 
119.4' 
137 .Oo 

10.26 x lo8 
10.26 x lo8 
10.26 x lo8 
10.26 x lo8 
10.23 x lo8 
10.23 x108 

4.55 
4.35 
4.37 
4.48 
4.39 
4.90 

29 1 
278 
279 
286 
281 
313 18 

I I 

Mean: 285 

TABU V I .  - TRAVEL OF T U R B W C E  .TRANSITION POINT (CRITICAL A Z I "  xkr) 

WITH GRASHOF NUMBER OF CYLINDER G r d  OR W I T H  CYLINDER DIAMETER d 

5' 

2.72 

3790 
x 1014 

1500 
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a 

0. 

0 

as-; 

LIE-I 
E 

4 0.7-1 
M) 

c.cczL 

05 -I 

a4 -1 

Figure 1. - Convection tests of Ayrton and Kilgour on nine platinum wires. 

Figure 2. - Convection tests of hngmuir on five platinum wires. 



60 NACA TM 1366 

1% G r  
Figure 3. - Convection t e s t s  of B i j l e v e l t  on s i x  wires of tantalum, platinum 

iron, copper, s i l v e r ,  and n icke l .  
I I I I 

.- 
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.7 L- 
I I 

1 I 1 I 
7 

_--- -.__I 

6 
log G r  

.5- 4 

Figure 7. - Convection t e s t s  of Koch on four  s t e e l  pipes.  

Figure 8. - Comparison of t e s t  r e su l t s  of d i f fe ren t  invest igators  f o r  Te = 0 
(extrapolated) . Limiting law of small temperature differences.  

r 

. 
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Figure 9. - Comparison of test resu l t s  of various investigators 
f o r  T e  = 0.65. 

Figure 10. - Summary of a l l  t e s t  r e s u l t s  with diatomic gases (Pr = 0.74) w i t h  
t h e  adjustment curve giving the most probable heat-transfer law based on 
present information. 
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N .. 

3 
M 

2 x 
8 

r-l 

> 

Azimuth, x, deg 
‘30 

+ 60 t r -  fcm 

Q 150 Gr -3.76~ W 

‘a!. L*- 0 rW t,,.-@2& tm-18.l0 C 

?to 0 -  
.3 

+ 

u .i. Dimensionless distance from wall, -qig$) 
r b  

Figure 13. - Velocity profiles near cylinder referred to nondimensional coordinates. 
Continuous curve represents theoretical solution. Points according to 
measurements of Jodlbauer for 2r = 9 centimeters; t, = 99.2’ C; t,= 18.1° C; 
Gr = 3.76~10~. 

n Cr 1/4. Dimensionless distance from wall, - r 8 114 gfX) 
Figure 14. - Temperature profiles near cylinder referred to nondimensional 

coordinates. Continuous curve represents theoretical solution. Points 
according to measurements of Jodlbauer for 2r = 9 centimeters; tw = 99.2O C; 
t,= 18.1° C; Gr = 3.76~10~. 
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r8  x 

Figure 15. - Velocity profiles near cylinder. Continuous curve gives 
theoretical solution. Points according to measurements of Jodlbauer for 
2r = 5 centimeters; tw = 104.6O C; t m =  18.1' C; Gr = 6.54~105. 
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a, * 
m m 

a, d 

*I 
m 

a, 
.ri 
Q 

0 r 2 3 4 

'9 f d  n Gr ?4 Dimensionless distance from wall, - E!!!%< 
r 8 % 

Figure 16. - Temperature profiles near Cylinder. Continuous curve gives 
theoretical solution. Points according to measurements of Jodlbauer for 
2r = 5 centimeters; t, = 104.6' c;  tm = 18.1° C; Gr = 6.54~10~. 
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I wu 

m3E Azimuth, x, deg $ 

Figure 17. - Azimuth function g(x) giving variation of local heat-transfer 
coefficient 
for profile 

or of a reciprocal distance from the wall which is characteristic 
(for example, boundary-layer thickness) along cylinder perimeter. 

- Local heat-transfer coefficient 
--- Mean heat-transfer coefficient, as 1:0.777 
Y/ / ,  Total heat-transfer coefficient, as 1:1.22 

Height H of vertical plate 
c- Azimuth, x deg--- 

Diameter d = 2r of horizontal cylinder 

Figure 18. - Comparison of heat transfer for rectangular plate and horizontal 
cylinder. For H = d, under otherwise equal conditions, the two diagrams 
give dimensional heat-transfer coefficients CY to scale. 
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Figure 19. - Ratio of t o t a l  heat t r ans fe r  of horizontal cylinder and v e r t i c a l  
p l a t e s  (on both sides) of different  heights under otherwise equal conditions. 
Ratio of boundary-layer Re a t  upper stagnation point of cylinder and upper 
edge of plate .  Abscissa, heat t r ans fe r  and Re; ordinate, p l a t e  height. 

Figure 20. - Vert ical  plate  103xlOOxl centimeters f o r  determining occurrence 
of turbulence f o r  f r e e  convection. 
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Figure 21. - Horizontal cylinder (58.5-cm diam., 100-cm length) for detemidng 
occurrence of turbulence for free convection. 

a 

Figure 22. - Schlieren photograph of' heat transfer at the vertical plate. Time 
photograph (25 sec) with lcns and camera. 

centimeters, right GO centimeters; critical Grashof number, 13.1~10~; 
critical boundary-layer Re,323. 

Surface temperature, t, = 100' C; 
c t , =  16.50 C; b = 748 millimeters; critical height (arrows), left 66.2 
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Figure 23. - Schlieren photograph of the heat t r ans fe r  a t  the horizontal  cylinder. 
Time photographs (20 sec) with lens and camera. 8tw, 102' C ;  tm, 18' C; 
b, 752 millimeters; 
l e f t  123.8O, r igh t  115.0°; c r i t i c a l  boundary-layer Re, 281. 

Gr of the cylinder, 10.2~10 ; c r i t i c a l  azimuth (arrows) 
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Figure 24. - Schlieren photographs of heat transfer a t  one side of v e r t i c a l  
plate .  Simultaneous instantaneous photographs (about 1/20 sec) with indirect  
illumination. tw, 860 C; tco 16.5' C j  b = 748 millimeters. ( a )  laminar; upper 
par t  of (b ) ,  t ransi t ion;  ( c )  and ( d ) ,  turbulent. 
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-, Figure 25. - Schlieren photographs of heat transfer at the horizontal cylinder. 
Simultaneous instantaneous photographs (1/20 sec) with indirect illumination. 
t, = 102O C; too= 18O C; b = 752 millimeters; G r ,  10.2~10~. 
nation point, laminar; (b) azimuth of about 120°, turbulent; ( c )  upper stagnation 
point, upflow of warm air with current lead wires and so forth. 

(a) lower stag- 
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Figure 26. - Variation of position of start of turbulence with Gr 
number of cylinder. Computed for critical boundary-layer Re, 285, 

Figure 27. - Variation of position of s t a r t  of turbuience k i t h  the cylinder 

Computed for critical boundary-layer Re, 285. 
diameter f o r  surface temperature of looo C in air at 20’ C and 760 millimeters 
of mercury. 
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